首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The bioavailability of selenium (Se) from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine (SeMet), and sodium selenite was assessed in Se-deficient Fischer-344 rats. Se as veal, chicken, beef, pork, lamb, flounder, tuna, SeMet, and sodium selenite was added to torula yeast (TY) basal diets to comprise Se-inadequate (0.05 mg Se/kg) diets. Se as sodium selenite was added to a TY basal diet to comprise a Se-adequate (0.10 mg Se/kg), Se-control diet. The experimental diets were fed to weanling Fischer-344 rats that had been subjected to dietary Se depletion for 6 wk. After 9 wk of the dietary Se repletion, relative activity of liver glutathione peroxidase (GSHPx) from the different dietary groups compared with control rats (100%) was: flounder 106%, tuna 101%, pork 86%, sodium selenite 81%, SeMet 80%, beef 80%, chicken 77%, veal 77%, and lamb 58%. Se from flounder was the most efficient at restoring Se concentrations in the liver and skeletal muscle. Se from sodium selenite, SeMet, beef, veal, chicken, pork, lamb, and tuna was not dietarily sufficient to restore liver and muscle Se after 9 wk of recovery following a 6-wk period of Se depletion.  相似文献   

2.
Animal studies indicate that the toxic effects of methylmercury (MeHg) exposures increase when selenium (Se) status is low. Toxicity is directly proportional to Hg/Se molar ratios in critical tissues such as brain and increase dramatically as molar ratios exceed 1:1. In this study, we examined the nail as a biomonitor of Hg/Se molar ratios in kidney, liver, and brain tissues of weanling male Long-Evans rats fed controlled diets containing varying amounts of Se and MeHg. Linear regression analyses indicate that the natural log transform of the Hg/Se ratio in the nails is strongly related to the Hg/Se molar ratio in kidney, liver, and brain (p?相似文献   

3.
The influence of dietary selenium (Se) on mercury (Hg) toxicity was studied in weanling male Long Evans rats. Rats were fed AIN-93G-based low-Se torula yeast diets or diets augmented with sodium selenite to attain adequate- or rich-Se levels (0.1, 1.0 or 15 μmol/kg, respectively) These diets were prepared with no added methylmercury (MeHg) or with moderate- or high-MeHg (0.2, 10 or 60 μmol/kg, respectively). Health and weights were monitored weekly. By the end of the 9-week study, MeHg toxicity had impaired growth of rats fed high-MeHg, low-Se diets by approximately 24% (p < 0.05) compared to the controls. Growth of rats fed high-MeHg, adequate-Se diets was impaired by approximately 8% (p < 0.05) relative to their control group, but rats fed high-MeHg, rich-Se diets did not show any growth impairment. Low-MeHg exposure did not affect rat growth at any dietary Se level. Concentrations of Hg in hair and blood reflected dietary MeHg exposure, but Hg toxicity was more directly related to the Hg to Se ratios. Results support the hypothesis that Hg-dependent sequestration of Se is a primary mechanism of Hg toxicity. Therefore, Hg to Se molar ratios provide a more reliable and comprehensive criteria for evaluating risks associated with MeHg exposure.  相似文献   

4.
Mercury compounds exert toxic effects via interaction with many vital enzymes involved in antioxidant regulation, such as selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Selenium supplementation can reactivate the mercury-inhibited TrxR and recover the cell viability in vitro. To gain an insight on how selenium supplementation affects mercury toxicity in vertebrates, we investigated the effects of selenium on the mercury accumulation and TrxR and GPx activities in a fish model. Juvenile zebra-seabreams were exposed either to methylmercury (MeHg) or inorganic mercury (Hg(2+)) in the presence or absence of sodium selenite (Se) for 28 days followed by 14 days of depuration. Mercury accumulation was found to be 10-fold higher under MeHg exposure than under Hg(2+) exposure. Selenium supplementation caused a half decrease of the accumulation of MeHg but did not influence Hg(2+) accumulation. Exposure to both mercurials led to a decrease of the activity of TrxR (<50% of control) in all organs. Se supplementation coincident with Hg(2+) exposure protected the thioredoxin system in fish liver. However, supplementation of Se during the depuration phase had no effects. The activity of GPx was only affected in the brain of fishes upon the exposure to MeHg and coexposure to MeHg and Se. Selenium supplementation has a limited capacity to prevent mercury effects in brain and kidney. These results demonstrate that Se supplementation plays a protective role in a tissue-specific manner and also highlight the importance of TrxR as a main target for mercurials in vivo.  相似文献   

5.
To study the effects of long-term selenium supplementation on absorption, distribution, and elimination of methylmercury (MeHg) in mice, three groups of male mice (Balb/c CA) were exposed for 7 wk to 0, 0.6, and 3 ppm sodium selenite in tap water. They were then given a single oral dose of Me203Hg (2 μmol/kg) by gastric intubation, and elimination of203Hg was followed by whole-body counting for 49 d at the same Se exposure as previously. Twenty-four hours and 49 d after dosage, 6–7 animals/group were sampled for analysis of203Hg distribution in the body. Glutathione peroxidase (GSH-PX) activity in blood and selenium levels in the liver were used as measures of selenium status. Gastrointestinal absorption of Me203Hg was not influenced by the Se status of the animals. Selenium supplementation of MeHg-exposed mice caused an enhanced whole-body elimination of Hg, but selenium-supplemented animals did not have lower Hg levels in the brain and kidney than nonsupplemented animals. The effect of selenium on the accumulation, of Hg in the brain was dose-dependent, a high dose (3 ppm Se) causing a higher initial accumulation of Hg. The intracellular distribution of203Hg in the liver and kidney was not affected by Se. The results indicate that selenium treatment of MeHg-exposed mice may have a positive effection the health of the animals by decreasing the total body burden of MeHg.  相似文献   

6.
The potential toxicity of mercury (Hg) content in fish has been widely evaluated by the scientific community, with Methylmercury (MeHg) being the only legislated species (1 mg kg−1, maximum concentration allowed in predatory fish). On the other hand, selenium (Se) is recognized to decrease its toxicity when both elements are simultaneously administrated. In the present paper, the total content of Se and Hg and their species in fish of high consumption, such as tuna, swordfish, and sardine, have been evaluated. The percentage of MeHg is higher than 90% of total Hg content. The results show that, for all of them, the Se/Hg ratio is significantly higher than one, being the maximum ratio for sardine. As only studying the bioaccessible fraction the extent of a toxic effect caused by an element can be predicted, the bioaccessibility of both analytes through an in vitro digestion method has been carried out. The results show that MeHg in all fishes is very low bioaccessible in both gastric and intestinal digestion. Because the MeHg bioaccessible fraction might be correlated to the Se content, the potential toxicity cannot be only related to the total Hg content but also to Se/Hg ratio.  相似文献   

7.
Organoseleno-compounds have been investigated for its beneficial effects against methylmercury toxicity. In this way, diphenyl diselenide (PhSe)2 was demonstrated to decrease Hg accumulation in mice, protect against MeHg-induced mitochondrial dysfunction, and protect against the overall toxicity of this metal. In the present study we aimed to investigate if co-treatment with (PhSe)2 and MeHg could decrease accumulation of Hg in liver slices of rats. Rat liver slices were co-treated with (PhSe)2 (0.5; 5 µM) and/or MeHg (25 µM) for 30 min at 37 °C and Se and Hg levels were measured by inductively coupled plasma mass spectrometry (ICP-MS) in the slices homogenate, P1 fraction, mitochondria and incubation medium. Co-treatment with (PhSe)2 and MeHg did not significantly alter Se levels in any of the samples when compared with compounds alone. In addition, co-treatment with (PhSe)2 and MeHg did not decrease Hg levels in any of the samples tested, although, co-incubation significantly increased Hg levels in homogenate. We suggest here that (PhSe)2 could exert its previously demonstrated protective effects not by reducing MeHg levels, but forming a complex with MeHg avoiding it to bind to critical molecules in cell.  相似文献   

8.
Phospholipid hydroperoxide glutathione peroxidase (PHGPX) is the second intracellular selenium (Se)-dependent glutathione peroxidase (GSH-Px) identified in mammals. Our objectives were to determine the effect of dietary vitamin E and Se levels on PHGPX activity expression in testis, epididymis, and seminal vesicles of pubertal maturing rats, and the relationship of PHGPX expression with testicular development and sperm quality. Forty Sprague-Dawley male weanling rats (21-d old), were initially fed for 3 wk a torula yeast basal diet (containing 0.05 mg Se/kg) supplemented with marginal levels of Se (0.1 mg/kg as Na2SeO3) and vitamin E (25 IU/kg as all-rac-α-tocopheryl acetate). Then, rats were fed the basal diets supplemented with 0 or 0.2 mg Se/kg and 0 or 100 IU vitamin E/kg diet during the 3-wk period of pubertal maturing. Compared with the Se-supplemented rats, those fed the Se-deficient diets retained 31, 88, 67, and 50% of Se-dependent GSH-Px activities in liver, testis, epididymis, and seminal vesicles, respectively. Testes and seminal vesicles had substantially higher (5-to 20-fold) PHGPX activity than liver. Dietary Se deficiency did not affect PHGPX activities in the reproductive tissues, but reduced PHGPX activity in liver by 28% (P < 0.0001). Dietary vitamin E supplementation did not affect PHGPX activity in liver, whereas it raised PHGPX activity in seminal vesicles by 43% (P < 0.005). Neither dietary vitamin E nor Se levels affected body weight gains, reproductive organ weights, or sperm counts and morphology. In conclusion, expression of PHGPX activity in testis and seminal vesicles was high and regulated by dietary Se and vitamin E differently from that in liver.  相似文献   

9.
The selenium (Se)-containing antioxidant selenoneine (2-selenyl-N α,N α,N α-trimethyl-l-histidine) has recently been discovered to be the predominant form of organic Se in tuna blood. Although dietary intake of fish Se has been suggested to reduce methylmercury (MeHg) toxicity, the molecular mechanism of MeHg detoxification by Se has not yet been determined. Here, we report evidence that selenoneine accelerates the excretion and demethylation of MeHg, mediated by a selenoneine-specific transporter, organic cations/carnitine transporter-1 (OCTN1). Selenoneine was incorporated into human embryonic kidney HEK293 cells transiently overexpressing OCTN1 and zebrafish blood cells by OCTN1. The K m for selenoneine uptake was 13.0 μM in OCTN1-overexpressing HEK293 cells and 9.5 μM in zebrafish blood cells, indicating high affinity of OCTN1 for selenoneine in human and zebrafish cells. When such OCTN1-expressing cells and embryos were exposed to MeHg–cysteine (MeHgCys), MeHg accumulation was decreased and the excretion and demethylation of MeHg were enhanced by selenoneine. In addition, exosomal secretion vesicles were detected in the culture water of embryos that had been microinjected with MeHgCys, suggesting that these may be responsible for MeHg excretion and demethylation. In contrast, OCTN1-deficient embryos accumulated MeHg, and MeHg excretion and demethylation were decreased. Furthermore, Hg accumulation was decreased in OCTN1-overexpressing HEK293 cells, but not in mock vector-transfected cells, indicating that selenoneine and OCTN1 can regulate MeHg detoxification in human cells. Thus, the selenoneine-mediated OCTN1 system regulates secretory lysosomal vesicle formation and MeHg demethylation.  相似文献   

10.
We estimated the nutritional availability of selenium (Se) in Se-enriched Kaiware radish sprouts (SeRS) by the tissue Se deposition and glutathione peroxidase (GPX) activity of rats administered the sprouts, and examined the effect of SeRS on the formation of aberrant crypt foci (ACF) in the colon of mice administered 1,2-dimethylhydrazine (DMH) to evaluate anti-tumor activity. Male weanling Wistar rats were divided into seven groups and fed a Se-deficient basal diet or the basal diet supplemented with 0.05, 0.10, or 0.15 microg/g of Se as sodium selenite or SeRS for 28 d. Supplementation with Se dose-dependently increased serum and liver Se concentrations and GPX activities, and the selenite-supplemented groups showed a higher increase than the SeRS-supplemented groups. The nutritional availability of Se in SeRS was estimated to be 33 or 64% by slope ratio analysis. Male 4-week-old A/J mice were divided into seven groups and fed a low Se basal diet or the basal diet supplemented with selenite, SeRS, or selenite + non-Se-enriched radish sprouts (NonSeRS) at a level of 0.1 or 2.0 microg Se/g for 9 weeks. After 1 week of feeding, all mice were given six subcutaneous injections of DMH (20 mg/kg) at 1-week intervals. The average number of ACF formed in the colon of mice fed the basal diet was 4.3. At a supplementation level of 0.1 mug Se/g, only SeRS significantly inhibited ACF formation. At a supplementation level of 2.0 microg Se/g, both selenite and SeRS significantly inhibited ACF formation. The addition of NonSeRS to the selenite-supplemented diets tended to inhibit ACF formation, but this was not statistically significant. These results indicate that SeRS shows lower nutritional availability but higher anti-tumor activity than selenite.  相似文献   

11.
We estimated the nutritional availability of selenium (Se) in Se-enriched Kaiware radish sprouts (SeRS) by the tissue Se deposition and glutathione peroxidase (GPX) activity of rats administered the sprouts, and examined the effect of SeRS on the formation of aberrant crypt foci (ACF) in the colon of mice administered 1,2-dimethylhydrazine (DMH) to evaluate anti-tumor activity. Male weanling Wistar rats were divided into seven groups and fed a Se-deficient basal diet or the basal diet supplemented with 0.05, 0.10, or 0.15 μg/g of Se as sodium selenite or SeRS for 28 d. Supplementation with Se dose-dependently increased serum and liver Se concentrations and GPX activities, and the selenite-supplemented groups showed a higher increase than the SeRS-supplemented groups. The nutritional availability of Se in SeRS was estimated to be 33 or 64% by slope ratio analysis. Male 4-week-old A/J mice were divided into seven groups and fed a low Se basal diet or the basal diet supplemented with selenite, SeRS, or selenite + non-Se-enriched radish sprouts (NonSeRS) at a level of 0.1 or 2.0 μg Se/g for 9 weeks. After 1 week of feeding, all mice were given six subcutaneous injections of DMH (20 mg/kg) at 1-week intervals. The average number of ACF formed in the colon of mice fed the basal diet was 4.3. At a supplementation level of 0.1 μg Se/g, only SeRS significantly inhibited ACF formation. At a supplementation level of 2.0 μg Se/g, both selenite and SeRS significantly inhibited ACF formation. The addition of NonSeRS to the selenite-supplemented diets tended to inhibit ACF formation, but this was not statistically significant. These results indicate that SeRS shows lower nutritional availability but higher anti-tumor activity than selenite.  相似文献   

12.
An experiment is conducted to investigate the effects of selenium (Se) source and level on growth performance, tissue Se concentrations, antioxidation, and immune functions of heat-stressed broilers from 22 to 42?days of age. A total of 210 22-day-old Arbor Acres commercial male chicks were assigned by body weight to one of seven treatments with six replicates of five birds each in a completely randomized design involving a 3?×?2 factorial arrangement plus one Se-unsupplemented basal diet control (containing 0.027?mg of Se/kg). The three Se sources were sodium selenite (Na2SeO3), Se yeast, and AMMS Se (Se protein), and the two supplemental Se levels were 0.15 or 0.30?mg Se/kg. All birds were reared under heat-stressed condition (33?±?1?°C during 0900?C1700?hours and 27?±?1?°C during 1900?C0700?hours with a relative humidity of 60?C80?%). The results showed that heat-stressed chicks fed Se-supplemented diets had higher (P?<?0.10) average daily feed intake, Se concentrations in liver and breast muscle, liver glutathione peroxidase (GSH-Px) activity, serum antibody titers against H5N1(Re-4 strain), H5N1(Re-5 strain) and lower (P?<?0.01) mortality compared with the control. Chicks fed the diets supplemented with 0.30?mg/kg of Se had higher (P?<?0.05) Se concentrations in liver and breast muscle, liver GSH-Px activity, and serum antibody titer against H5N1 (Re-4 strain) than those fed the diets supplemented with 0.15?mg/kg of Se. Broilers fed the diets supplemented with Se yeast had higher (P?<?0.001) Se concentrations in liver and breast muscle than those fed the diets supplemented with Na2SeO3 or AMMS Se. However, broilers fed the diets supplemented with AMMS Se had higher (P?<?0.05) serum antibody titers against H5N1 (Re-4 strain) and H5N1 (Re-5 strain) than those fed the diets supplemented with Na2SeO3. These results indicated that Se yeast was more effective than Na2SeO3 or AMMS Se in increasing tissue Se retention; however, AMMS Se was more effective than Na2SeO3 or Se yeast in improving immune functions of heat-stressed broilers.  相似文献   

13.
Biochemical and physiological responses of walleye (Sander vitreus) and perch (Perca flavescens) were studied in four Canadian boreal forest lakes representing a mercury (Hg) exposure gradient. The aim of this study was to assess the effects of Hg and methylmercury (MeHg) on the general physiological condition of fish as well as to gauge the relationship between MeHg and the glutathione (GSH) system in metal-contaminated and reference sites using a series of biomarkers. Walleye from Lake Malartic had the highest liver MeHg concentrations, exhibited lower hepatosomatic indices (HSI) and lower glutathione S-transferase (GST) activity. HSI was negatively related to liver total Hg concentrations in walleye (R2=0.33, n=108, P<0.0001). Glutathione reductase (GR) and GST activity for walleye from Lake Malartic were related to HSI (R2=0.38, n=25, P=0.0010; R2=0.46, n=27, P<0.0001, respectively). In Lake Desjardins-East, where perch had the highest liver MeHg concentrations, glutathione peroxidase selenium dependent activity (GSH-Px SD) and GST activity were negatively related to liver MeHg concentrations (R2=0.39, n=21, P=0.0026; R2=0.22, n=21, P=0.0298, respectively). This study suggests that Hg may induce adverse effects on the physiology and cellular metabolism of walleye and perch at environmentally relevant concentrations.  相似文献   

14.
Mercury (Hg) and selenium (Se) determinations were carried out to evaluate human exposure to those elements through fish consumption in Spain and Portugal. Atomic fluorescence spectroscopy (AFS) was applied in a cold vapor mode for total mercury quantification and was also hyphenated to gas chromatography (GC) to achieve the speciation of organomercurial species in fish samples. The results obtained show the highest concentration of Hg in swordfish and tuna (0.47+/-0.02 and 0.31+/-0.01 microg g-1, respectively), and a much lower concentration in sardine, mackerel shad, and octopus (0.048+/-0.002, 0.033+/-0.001, and 0.024+/-0.001 microg g-1, respectively). The determination of alkyl mercury compounds revealed that 93-98% of mercury in the fish samples was in the organic form. Methylmercury (MeHg) was the only species found in the three fish species with higher mercury content.Total selenium concentration was high in sardine, swordfish, and tuna (0.43+/-0.02, 0.47+/-0.02, and 0.92+/-0.01 microg g-1, respectively), but low in mackerel shad and octopus (0.26+/-0.01 and 0.13+/-0.01 microg g-1, respectively). Speciation of selenium compounds was done by high-performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry (LC-ICP-MS). Selenomethionine (SeMet) was the only selenium compound identified in the fish samples with higher selenium content.Among the fish species studied, sardine had the most favourable Se:Hg and SeMet:MeHg molar ratios; therefore, its consumption seems to be preferable.  相似文献   

15.
Physical and ecologicalfactors, including lake temperature, fishphysiology, and diet, influence methylmercury(MeHg) exposure in fish. We employedbioenergetics modeling to compare dietary MeHgexposure in sympatric top predators, largemouthbass (Micropterus salmoides) and northernpike (Esox lucius). We comparedsimulations using field data to hypotheticalsimulations with (1) ± 25% change in meandaily lake temperature for juvenile and adultbass and pike; (2) ± 25% change inlong-term growth rate of pike; (3) adult bassdiet shift from generalist predator to strictpiscivore. Bass and pike MeHg exposures weresimilar in baseline simulations and reflectedpatterns in field tissue concentrations. Thisoccurred despite the fact that bass consumedhighly contaminated benthic invertebrates,while pike exclusively consumed lesscontaminated fish prey. Higher temperaturesincreased adult bass and pike MeHg exposures by35% and 27%, respectively. Shifting adultbass diets to 100% fish resulted in a 54%decrease in exposure, while increasing pikegrowth rates resulted in a 24% decrease. Bioenergetics modeling proved useful inunderstanding the influence of temperature,prey-base, and predator growth on differencesin Hg exposure across fish species.  相似文献   

16.
Experiments were conducted to determine whether the increased glutathione S-transferase (GSH-T) activity associated with selenium (Se) deficiency is necessarily related to losses in the activity of Se-dependent glutathione peroxidase (SeGSHpx) in chicks. Nutritional Se status was altered in two ways: by treatment with an antagonist of Se utilization, aurothioglucose (AuTG), and by feeding diets containing excess Se. Chicks given AuTG (10–30 mg AU/kg, sc) had growth rates and hepatic GSH concentrations that were comparable to those of saline-treated controls; however, their plasma GSH levels exceeded those of either Se-deficient (6-fold) or-adequate (3-fold) saline-treated chicks. Hepatic SeGSHpx activities of AuTG-treated chicks were hals those of controls under conditions of Se-adequacy; however, this effect was not detected when Se was deficient. Hepatic GSH-TCDNB (assayed with 1-chloro-2,4-dinitrobenzene) activities of AuTG-treated chicks were significantly greater than those of controls when Se was deficient (i.e., when SeGSHpx activity was 12% of the Se-adequate level); however, deprivation of Se did not affect GSH-TCDNB activity in the absence of AuTG. chicks fed excess Se (6–20 ppm as Na2SeO3) in diets containing either low (2 IU/kg) or adequate (100 IU/kg) VE, showed hepatic GSH-TCDNB activities and GSH concentrations greater than those of Se-adequate (0.2 ppm Se) chicks by 100% and 40%, respectively. That increased hepatic GSH-TCDNB activity can occur because of either AuTG or excess Se status under conditions wherein SeGSHpx activity is not affected indicates that the transferase response is not directly related to changes in the peroxidase.  相似文献   

17.

Background and Aims

Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects.

Methods

Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied.

Key Results

The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis.

Conclusions

Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots.  相似文献   

18.
The selenoprotein, cellular glutathione peroxidase (cGPx), has an important role in protecting organisms from oxidative damage through reducing levels of harmful peroxides. The liver and kidney in particular, have important roles in selenium (Se) metabolism and Se is excreted predominantly in urine and feces. In order to characterize the dynamics of these pathways we have measured the time-dependent changes in the quantities of hepatic, renal, urinary, and fecal Se species in mice fed Se-adequate and Se-deficient diets after injection of (82)Se-enriched selenite. Exogenous (82)Se was transformed to cGPx in both the liver and kidney within 1 h after injection and the synthesis of cGPx decreased 1 to 6 h and continued at a constant level from 6 to 72 h after injection. The total amount of Se associated with cGPx in mice fed Se-deficient diets was found to be less than in mice fed Se-adequate diets. This finding indicated that cGPx synthesis was suppressed under Se-deficient conditions and did not recover with selenite injection. Excess Se was associated with selenosugar in liver and transported to the kidney within 1 h after injection, and then excreted in urine and feces within 6 h after injection. Any excess amount of Se was excreted mainly as a selenosugar in urine.  相似文献   

19.
Methyl parathion (MP), an organophosphate widely applied in agriculture and aquaculture, induces oxidative stress due to free radical generation and changes in the antioxidant defense system. The antioxidant roles of selenium (Se) were evaluated in Brycon cephalus exposed to 2 mg L(-1) of Folisuper 600 BR (MP commercial formulation - MPc, 600 g L(-1)) for 96 h. Catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) levels in the gills, white muscle and liver were evaluated in fish fed on diets containing 0 or 1.5 mg Se kg(-1) for 8 weeks. In fish treated with a Se-free diet, the MPc exposure increased SOD and CAT activities in all tissues. However, the GPx activity decreased in white muscle and gills whereas no alterations were observed in the liver. MPc also increased GST activity in all tissues with a concurrent decrease in GSH levels. LPO values increased in white muscle and gills and did not change in liver after MPc exposure. A Se-supplemented diet reversed these findings, preventing increases in LPO levels and concurrent decreases in GPx activity in gills and white muscle. Similarly, GSH levels were maintained in all tissue after MPc exposure. These results suggest that dietary Se supplementation protects cells against MPc-induced oxidative stress.  相似文献   

20.
Studies were conducted to determine whether nutritional selenium (Se) status affects the nutritional status of the chick with respect to other trace elements, particularly copper (Cu) and Zinc (Zn). Severe Se deficiency was produced in chicks by the use of diets that contained exceedingly low contents (less than 0.010 ppm) of Se, but contained adequate amounts of all other known essential nutrients. This diet was based upon corn and soybean meal produced in areas of China with endemic Se deficiency of geobotanical origin. A level of at least 0.10 ppm Se was found to be required to maintain normal Se status of chicks fed this diet, and Se deficiency resulted in decreased levels of Cu, Zn, and molybdenum in the pancreas (liver and plasma levels were not affected). High dietary supplementation of Zn nor Cu did not affect the short-term utilization of Se, as indicated by the 18-h responses of Se-dependent glutathione peroxidase in plasma and liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号