首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A large number of compounds known as “AII (Angiotensin II) antagonists” have been developed for the treatment of various heart diseases such as hypertension, congestive heart failure, and chronic renal failure. Most of the currently known AII receptor antagonists share a similar chemical structure, consisting of nitrogen atoms, a lipophilic alkyl side chain and an acidic group. As a new series, we have designed and synthesized various pyridylimidazole derivatives. In this report we would like to discuss the structure–activity relationship of these series of compounds using the comparative molecular field analysis (CoMFA) methods. We could come up with a good CoMFA model (cross-validated and conventional r2 values equal to 0.702 and 0.991, respectively) and the validity of the model was confirmed by synthesizing and measuring their biological activity of additional 6 compounds suggested by the model. This result provides additional information on the structural requirement for structurally diverse group of AII receptor antagonists.  相似文献   

2.
The soluble form of rat germ cell adenylate cyclase was inhibited by compounds with a catechol moiety. Among the naturally occurring catechols tested, catechol estrogens were the most potent inhibitors. Catechol estrogens at 2-6 microM inhibited enzyme activity by 50% and almost completely at 30-100 microM concentration. The inhibitory activity of catechol estrogens depends on the catechol moiety of the molecule. Catechol per se also inhibited the activity of this enzyme, 50% inhibition being achieved at about 11 microM. The two hydroxyls of the catechol moiety are essential for the inhibitory interaction with the enzyme. Thus, aromatic compounds containing only one hydroxyl group in the benzene ring, such as tyrosine, phenylephrine, estradiol, and 6 alpha-hydroxyestradiol were either completely inactive or had marginal inhibitory activity at concentrations up to 0.3-1 mM. Moreover, methylation of the hydroxyl groups of the catechol moiety of the catechol estrogens as in 2-methoxyestradiol 3-methyl ether rendered the catechol estrogens inactive. The inhibitory potency of these compounds varied greatly depending on the structure associated with the catechol ring. Thus, compounds in which catechol is associated with an aliphatic side chain, such as dopamine, L-dopa, norepinephrine, and isoproterenol, were about 11- to 34-fold less potent than catechol. On the other hand, compounds in which catechol is associated either with a hydroaromatic ring system, as in apomorphine, or with an alicyclic ring system, as in catechol estrogens, were about 2- to 5-fold more potent than catechol. The inhibitory effect of dopamine, apomorphine, and catechol estrogens was not affected by specific D-1 or D-2 antagonist, indicating that they do not act via receptors for dopamine.  相似文献   

3.
Various estrogen analogs were synthesized and tested for binding to human ERα using a fluorescence polarization displacement assay. Binding affinity and orientation were also predicted using docking calculations. Docking was able to accurately predict relative binding affinity and orientation for estradiol, but only if a tightly bound water molecule bridging Arg394/Glu353 is present. Di-hydroxyl compounds sometimes bind in two orientations, which are flipped in terms of relative positioning of their hydroxyl groups. Di-hydroxyl compounds were predicted to bind with their aliphatic hydroxyl group interacting with His524 in ERα. One nonsteroid-based dihdroxyl compound was 1000-fold specific for ERβ over ERα, and was also 25-fold specific for agonist ERβ versus antagonist activity. Docking predictions suggest this specificity may be due to interaction of the aliphatic hydroxyl with His475 in the agonist form of ERβ, versus with Thr299 in the antagonist form. But, the presence of this aliphatic hydroxyl is not required in all compounds, since mono-hydroxyl (phenolic) compounds bind ERα with high affinity, via hydroxyl hydrogen bonding interactions with the ERα Arg394/Glu353/water triad, and van der Waals interactions with the rest of the molecule.  相似文献   

4.
New 2-phenacyl-1,2,4-triazol-3-ones were obtained by the reaction of 5-alkyl-1,2,4-triazol-3-ones with alpha-bromoacetophenone in alkaline medium. Selective reduction of the side chain carbonyl group to hydroxy group was achieved with NaBH4. The reaction of some compounds containing a phenolic hydroxyl with 4-toluenesulfonyl chloride or benzyl bromide in the presence of NaOH led to tosylated or benzylated derivatives. The tosylation or benzylation at the alcoholic hydroxyl was carried out in the presence of sodium metal. Some of the newly synthesized compounds revealed an antimicrobial activity; 6 of 14 new compounds that were studied by the National Cancer Institute were found to possess antitumor activity.  相似文献   

5.
To delineate the molecular mechanism underlying the inverse agonist activity of olmesartan, a potent angiotensin II type 1 (AT1) receptor antagonist, we performed binding affinity studies and an inositol phosphate production assay. Binding affinity of olmesartan and its related compounds to wild-type and mutant AT1 receptors demonstrated that interactions between olmesartan and Tyr113, Lys199, His256, and Gln257 in the AT1 receptor were important. The inositol phosphate production assay of olmesartan and related compounds using mutant receptors indicated that the inverse agonist activity required two interactions, that between the hydroxyl group of olmesartan and Tyr113 in the receptor and that between the carboxyl group of olmesartan and Lys199 and His256 in the receptor. Gln257 was found to be important for the interaction with olmesartan but not for the inverse agonist activity. Based on these results, we constructed a model for the interaction between olmesartan and the AT1 receptor. Although the activation of G protein-coupled receptors is initiated by anti-clockwise rotation of transmembrane (TM) III and TM VI followed by changes in the conformation of the receptor, in this model, cooperative interactions between the hydroxyl group and Tyr113 in TM III and between the carboxyl group and His256 in TM VI were essential for the potent inverse agonist activity of olmesartan. We speculate that the specific interaction of olmesartan with these two TMs is essential for stabilizing the AT1 receptor in an inactive conformation. A better understanding of the molecular mechanisms of the inverse agonism could be useful for the development of new G protein-coupled receptor antagonists with inverse agonist activity.  相似文献   

6.
《Phytomedicine》2015,22(4):498-503
Our previous results elucidated that the leaves of Eriobotrya japonica possessed the potential to suppress ovariectomy-induced bone mineral density deterioration, and ursolic acid, the major bioactive component in these leaves, suppressed the osteoclast differentiation. The aim of this study was to discover more candidates for development of novel antiosteoclastogenesis agents from the leaves of E. japonica. Phytochemical analysis following a cell-based osteoclastic tartrate-resistant acid phosphatase (TRAP) activity assay revealed 11 more compounds with a potent antiosteoclastogenesis effect. The potency of ursane-type triterpenoids from the leaves of E. japonica prompted us to investigate the structure–activity relationships underlying their antiosteoclastogenesis. The results revealed that both the hydroxyl group at C-3 and the carboxylic group at C-17 played indispensable roles in the antiosteoclastogenesis activity of ursane-type triterpenoids. The configuration at C-3 (a beta-form of the hydroxyl group) was found to be important for this activity. While introducing a hydroxyl group at C-19 increased the inhibitory activity of ursane-type triterpenoids carrying an alpha-form hydroxyl group at C-3. The bioactivity analyses of ursolic acid and oleanolic acid demonstrated that the antiosteoclastogenesis effect of ursolic acid may be related to different positions of the C-29 and C-30 methyl groups on the E-ring, since oleanolic acid showed limited activity. The addition of a hydroxyl group at C-2 would dramatically improve the inhibition of oleanane-type triterpenoids. Collectively, these findings could provide important clues for the improvement of multi-targeted antiosteoclastogenesis agents from the leaves of E. japonica.  相似文献   

7.
DuP 532 is a novel nonpeptide angiotensin II (AII) receptor antagonist under development for the treatment of hypertension. DuP 532 is a more potent antihypertensive agent in renal hypertensive rats (ED30 = 0.042 mg/kg, i.v.) and displays a similar or longer duration of action than the previously described AII antagonist, DuP 753. DuP 532, in contrast to DuP 753, is a noncompetitive antagonist of AII-induced contractions of rabbit aortic strips (KB = 1.1 x 10(-10) M). However, the inhibition of AII binding by DuP 532 in rat adrenal cortex does not correlate with either the aortic contractile response or with the hypotensive response. Assay conditions were evaluated and the presence or absence of BSA was shown to markedly affect the apparent binding affinity of DuP 532 and other 5-carboxylic acid derivatives. DuP 753 and other compounds were much less affected. The IC50 for DuP 532 was 4.7 x 10(-6) M with and 3 x 10(-9) M without BSA. The IC50s for DuP 753 were 1.7 x 10(-8) M with and 5 x -9 M without BSA. Both compounds with or without BSA did not completely inhibit AII binding which is characteristic of AT1 selectivity. BSA also reduced the effect of DuP 532 on the AII-induced contractions of rat main pulmonary artery preparations and the AII-induced Ca2+ mobilization in rat aortic smooth muscle cells. DuP 532 was very specific for AT1 receptors and did not interfere with receptors associated with neurotensin, prazosin, bradykinin, nitrendipine, or vasopressin. It is concluded that DuP 532 represents a new class of specific, but noncompetitive. AII receptor antagonists whose binding characteristics may provide new insight into AII receptor function.  相似文献   

8.
The blunting of arterial pressure increases to a variety of pressor agents or the lowering of arterial pressure in some models of hypertension following intracerebroventricular administration of an angiotensin II (AII) antagonist, has been interpreted as prima facie evidence for the involvement of the central AII system in these situations. Central administration of vasopressin or carbachol (a cholinergic agonist) produces pressor effects which have been reported to be due to an increase in the activity of the sympathetic nervous system. We now report that central administration of AII antagonists [either (Sar-1, Ile-8) AII or (Sar-1, Ala-8) AII] in rats prevents the majority (greater than 70%) of the pressor effects of intraventricular vasopressin or carbachol. These results can be interpreted in two ways. The first is that all of these pressor agents use a central angiotensinergic mechanism(s) to increase sympathetic nervous system activity. An alternative hypothesis is that centrally administered AII antagonists non-specifically inhibit sympathetic nervous system function.  相似文献   

9.
Salt-sensitive hypertension is a characteristic of the metabolic syndrome. Given the links to cardiovascular events, the mechanisms underlying sodium metabolism may represent an important therapeutic target for this disorder. Angiotensin II (AII) is a key peptide underlying sodium retention. However, 5'AMP-activated protein kinase (AMPK) has also been reported to participate in the regulation of ion transport. In this study we examined the relationship between AII and AMPK on the development of hypertension in two salt-sensitive mouse models. In the first model, the mice were maintained on a high-fat diet (HFD) for 12 weeks, in order to develop features similar to the metabolic syndrome, including salt-sensitive hypertension. HFD-induced obese mice showed elevated systolic blood pressure and lower sodium excretion in response to salt loading, along with an increase in AII contents and inactivation of AMPK in the kidney, which were significantly improved by the treatment of an angiotensin II antagonist, losartan, for 2 weeks. To clarify the effects of AII, a second group of mice was infused with AII via an osmotic pump, which led to higher systolic blood pressure, and decreases in urinary sodium excretion and the expression of AMPK, in a manner similar to those observed in the HFD mice. However, treatment with an AMPK activator, metformin, improved the changes induced by the AII, suggesting that AII induced sodium retention works by acting on AMPK activity. Finally, we evaluated the changes in salt-sensitivity by performing 2-week salt loading experiments with or without metformin. AII infusion elevated blood pressure by salt loading but metformin prevented it. These findings indicate that AII suppresses AMPK activity in the kidney, leading to sodium retention and enhanced salt-sensitivity, and that AMPK activation may represent a new therapeutic target for obesity-related salt-sensitive hypertension.  相似文献   

10.
Murine Schistosomiasis mansoni is a parasitic infection associated with a delayed-type hypersensitivity granulomatous reaction to the schistosome eggs. This reaction is characterized by the accumulation of mononuclear cells and other inflammatory cell types around the eggs. Granuloma macrophages produce angiotensin II (AII), which appears to have immunoregulatory function. By using an in vitro chemotaxis assay, this study demonstrated that AII is a chemotactic factor for splenic mononuclear cells derived from infected mice. The response was bimodal, with peak activities occurring at 10(-10) and 10(-6) M. AII was chemotactic for T lymphocytes, B lymphocytes, and a large population of unidentified mononuclear cells at the optimal chemotactic concentrations of the peptide. At high concentrations, AII was also chemotactic for phagocytic mononuclear cells. Sar1, ala8-AII, an analog of AII with antagonist activity, completely blocked AII-induced chemotaxis. A [3H]-AII binding assay revealed high-affinity specific binding on spleen cells. The binding was rapid, was dependent on radioligand concentration, and was reversible. These latter observations suggest that the chemotactic activity of AII for subpopulations of splenic mononuclear cells is mediated via AII receptors.  相似文献   

11.
12.
为了改善黄芩素的抗肿瘤活性。本实验以黄芩素为原料,对其进行结构修饰。首先通过mannich反应,在8位引入胺亚甲基,然后通过酰基化反应在7位(6位)酚羟基上引入不同的疏水性基团。并利用CCK-8法对目标化合物进行抗MCF-7肿瘤细胞的活性评价。结果合成得到了6个目标化合物,通过1HNMR、13CNMR、MS和化学手段相结合的方法确定了其结构,其中化合物2~6为新化合物。实验利用黄酮类邻二酚羟基的特性,通过与氯化锶的络合反应,巧妙而简单的确证了所得目标化合物的酯键是在化合物的7位羟基上。抗MCF-7肿瘤活性实验表明,在黄芩素8位上引入含氮原子的胺亚甲基后活性比先导化合物黄芩素强,在其7位上再引入酯键后3个化合物活性比先导化合物强。  相似文献   

13.
Angiotensin II (AII), a product of rennin-angiotensin system, exerts an important role on the function of immune system cells. In this study, the effect of AII on the phagocytic activity of mouse peritoneal macrophages was assessed. Mice peritoneal macrophages were cultured for 48 h and the influence of different concentrations of AII (10(-14) to 10(-7) M) and/or losartan, 10(-16) to 10(-6) M), an AT1 angiotensin receptor antagonist, on phagocytic activity and superoxide anion production was determined. Dimethylthiazoldiphenyltetrazolium bromide reduction and the nucleic acid content were used to assess the cvtotoxicity of losartan. A stimulatory effect on phagocytic activity (P < 0.05) was observed with 10(-13) M and 10(-12 M) AII concentrations. The addition of losartan (up to10(-14) M) to the cell cultures blocked (P < 0.001) the phagocytosis indicating the involvement of AT1 receptors. In contrast, superoxide anion production was not affected by AII or losartan. The existence of AT1 and AT2 receptors in peritoneal macrophages was demonstrated by immunofluorescence microscopy. These results support the hypothesis that AII receptors can modulate murine macrophage activity and phagocytosis, and suggest that AII may have a therapeutic role as an immunomodulatory agent in modifying the host resistance to infection.  相似文献   

14.
A series of nine synthetic polyaromatic compounds were synthesized by polymerization of aromatic ring monomers with formaldehyde, which yield substantially ordered backbones with different functional anionic groups (hydroxyl and carboxyl) on the phenol ring. These compounds were tested for their heparin-mimicking activity: (1) inhibition of heparanase activity; (2) inhibition of SMC proliferation; and (3) release of bFGF from the ECM. We demonstrate that compounds that have two hydroxyl groups para and ortho to the carboxylic group and a carboxylic group at a distance of two carbons from the phenol ring inhibit heparanase activity and SMC proliferation, as well as induced an almost complete release of bFGF from ECM. Addition of a methyl group next to the carboxylic group led to a preferential inhibition of heparanase activity. Similar results were obtained with a compound that contains one hydroxyl group para to the carboxylic group and an ether group near the carboxylic group on the phenol ring. Preferential inhibition of SMC proliferation was best achieved when the position of the hydroxyl group is para and ortho to the carboxylic group and the carboxylic group is at a distance of one carbon from the phenol ring. On the other hand, for maximal release of bFGF from ECM, the position of the carboxylic group should be three carbons away from the phenol ring. These new heparin-mimicking compounds may have a potential use in inhibition of tumor metastasis, arteriosclerosis, and inflammation.  相似文献   

15.
Dopamine D1/D2 receptors are important targets for drug discovery in the treatment of central nervous system diseases. To discover new and potential D1/D2 ligands, 17 derivatives of tetrahydroprotoberberine (THPB) with various substituents were prepared by chemical synthesis or microbial transformation using Streptomyces griseus ATCC 13273. Their functional activities on D1 and D2 receptors were determined by cAMP assay and calcium flux assay. Seven compounds showed high activity on D1/D2 receptor with low IC50 values less than 1?µM. Especially, top compound 5 showed strong antagonistic activity on both D1 and D2 receptor with an IC50 of 0.391 and 0.0757?µM, respectively. Five compounds displayed selective antagonistic activity on D1 and D2 receptor. The SAR studies revealed that (1) the hydroxyl group at C-9 position plays an important role in keeping a good activity and small or fewer substituents on ring D of THPBs may also stimulate their effects, (2) the absence of substituents at C-9 position tends to be more selective for D2 receptor, and (3) hydroxyl substitution at C-2 position and the substitution at C-9 position may facilitate the conversion of D1 receptor from antagonist to agonist. Molecular docking simulations found that Asp 103/Asp 114, Ser 107/Cys 118, and Trp 285/ Trp 386 of D1/ D2 receptors are the key residues, which have strong interactions with the active D1/D2 compounds and may influence their functional profiles.  相似文献   

16.
The results of a study of the effects of hydroxyl groups at positions, 2, 4 and 6 of the amino sugar on the activity of daunorubicin, adriamycin, and stereoisomers are presented. While the 4′-deoxy derivatives showed a slightly increased biological activity as compared with the parent compounds, the derivatives containing an additional hydroxyl group were less active. It is suggested that the changes in the polarity and in the DNA binding ability of these derivatives are the main factors accounting for the difference in the in vivo activity. The possible relations among the pKa values, the DNA binding properties, and the cellular uptake of the compounds are discussed with particular reference to their therapeutic effectiveness.  相似文献   

17.
Diglyceride analogs were studied with respect to their abilities to activate protein kinase C (Ca2+- and phospholipid-dependent protein kinase) in the presence of low calcium and phospholipid. Analogs which lacked either a free hydroxyl group at the 3 position or an ester moiety at the 1 position were without activity. It was concluded that the hydrophilic moieties of the active diglycerides are crucial for activity. However, diglyceride analogs containing additional hydrophilic moieties in one of the acyl side chains did not exhibit enhanced activity when compared to diglycerides containing two fatty acyl groups. Diglyceride analogs with a modified glycerol backbone were also studied. Homologous diglycerides with either one or two methylene groups between the 3-methylene group of the diglyceride and the hydroxyl group possessed markedly reduced activities when compared to the appropriate unmodified diglyceride. Isomers of these homologues which contained either a methyl group at the 1 position, or dimethyl groups incorporated at the 1 and 3 positions, were virtually without activity. Where studied, none of the diglyceride analogs prepared possessed antagonist activity. The results of these experiments are discussed with respect to the extreme specificity observed.  相似文献   

18.
Structure-uncoupling activity relationship of seven anthraquinone derivatives were investigated using rat liver mitochondria. Three compounds bearing the free hydroxyl group at the beta-position of their anthraquinone nucleus (1,3,6,8-tetrahydroxyanthraquinone, 1-acetyl-2,4,5,7-tetrahydroxy-9,10-anthracenedione and skyrin) exhibited uncoupling effect. Rugulosin, rugulin and physcion (all lacking the hydroxyl at the beta-position) were ineffective. Erythroglaucin, a derivative of physcion with the free hydroxyl group at the gamma-position, exhibited the highest uncoupling activity in the series tested. In addition, erythroglaucin abolished the energy dependent Ca2+ retention in mitochondria and induced Ca2+ leak. It also prevented the energization of mitochondrial membrane by ATP and induced a loss of the ATP induced membrane potential similarly as did carbonylcyanamide-3-chlorophenyl hydrazone (CCCP). The data show that the free hydroxyl group at either the gamma-position or the beta-position of anthraquinone nucleus is a prerequisite of the uncoupling activity of hydroxyanthraquinones.  相似文献   

19.
The synthesis and biological evaluation of caffonyl pyrrolidine derivatives as MMPs inhibitors are reported in this paper. Inhibiting activities of synthesized compounds on gelatinase (MMP-2 and -9) were tested by using succinylated gelatin as substrate. Structure-activity relationship results from these tested compounds demonstrated that longer and more flexible side chain linked to the pyrrolidine ring at C(4) produced higher activity at gelatinase. Furthermore, aromatic heterocycle and sulfamide in the same position could enhance the activities. Compounds with free phenol hydroxyl group showed higher activity compared to methylated derivatives (or counterparts), which confirms the importance of phenol hydroxyl functionality in the interaction with gelatinase. The anti-metastasis model of mice bearing H(22) tumor cell was used to evaluate their in vivo inhibiting activities. All tested compounds were orally administered at a dose of 50 or 100mg/kg, 6days/week for two weeks. The test results demonstrated that most of these inhibitors showed significant anti-cancer activities (inhibitory rate>35%) and were devoid of toxic effects. Compound 29 showed the highest inhibitory rate at 69.25%, indicating that it might be a promising lead compound.  相似文献   

20.
Angiotensin II (AII) as well as analog peptides shows antimalarial activity against Plasmodium gallinaceum and Plasmodium falciparum, but the exact mechanism of action is still unknown. This work presents the solid‐phase synthesis and characterization of eight peptides corresponding to the alanine scanning series of AII plus the amide‐capped derivative and the evaluation of the antiplasmodial activity of these peptides against mature P. gallinaceum sporozoites. The Ala screening data indicates that the replacement of either the Ile5 or the His6 residues causes minor effects on the in vitro antiplasmodial activity compared with AII, i.e. AII (88%), [Ala6]‐AII (79%), and [Ala5]‐AII (75%). Analogs [Ala3]‐AII, [Ala1]‐AII, and AII‐NH2 showed antiplasmodial activity around 65%, whereas the activity of the [Ala8]‐AII, [Ala7]‐AII, [Ala4]‐AII, and [Ala2]‐AII analogs is lower than 45%. Circular dichroism data suggest that AII and the most active analogs adopt a β‐fold conformation in different solutions. All AII analogs, except [Ala4]‐AII and [Ala8]‐AII, show contractile responses and interact with the AT1 receptor, [Ala5]‐AII and [Ala6]‐AII. In conclusion, this approach is helpful to understand the contribution of each amino acid residue to the bioactivity of AII, opening new perspectives toward the design of new sporozoiticidal compounds. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号