首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Bettecken  B Aissani  C R Müller  G Bernardi 《Gene》1992,122(2):329-335
The genomes of warm-blooded vertebrates are mosaics of long DNA segments (> 300 kb, on the average), the isochores, homogeneous in GC levels, which belong to a small number of compositional families. In the present work, the human dystrophin-encoding gene, spanning more than 2.3 Mb in Giemsa band Xp21 (on the short arm of the X chromosome), was analyzed in its isochore organization by hybridizing cDNA probes, corresponding to eight contiguous segments of the coding sequence, on compositional fractions from human DNA. Five DNA regions of uniform (+/- 0.5%) GC content, separated by compositional discontinuities of about 2% GC, were found, so providing the first high-resolution compositional map obtained for a human genome locus and the first direct estimate of isochore size (360 kb to more than 770 kb, in the locus under consideration). One of the isochores contains 71% and another one 21% of deletion breakpoints found in patients suffering from Duchenne's and Becker's muscular dystrophies.  相似文献   

2.
The vertebrate genome: isochores and evolution   总被引:18,自引:6,他引:12  
  相似文献   

3.
Sazanov  A. A.  Sazanova  A. L.  Kozyreva  A. A.  Smirnov  A. F.  Andreozzi  L.  Federico  C.  Motta  S.  Saccone  S.  Bernardi  G. 《Russian Journal of Genetics》2003,39(6):681-686
The distribution of various isochore families on mitotic chromosomes of domestic chicken and Japanese quail was studied by the method of fluorescence in situ DNA–DNA hybridization (FISH). DNA of various isochore families was shown to be distributed irregularly and similarly on chromosomes of domestic chicken and Japanese quail. The GC-rich isochore families (H2, H3, and H4) hybridized mainly to microchromosomes and a majority of macrochromosome telomeric regions. In chicken, an intense fluorescence was also in a structural heterochromatin region of the Z chromosome long arm. In some regions of the quail macrochromosome arms, hybridization was also with isochore families H3 and H4. On macrochromosomes of both species, the pattern of hybridization with isochores of the H2 and H3 families resembled R-banding. The light isochores (L1 and L2 families) are mostly detected within macrochromosome internal regions corresponding to G bands, whereas microchromosomes lack light isochores. Although mammalian and avian karyotypes differ significantly in organization, the isochore distribution in genomes of these two lineages of the warm-blooded animals is similar in principle. On macrochromosomes of the two avian species studied, a pattern of isochore distribution resembled that of mammalian chromosomes. The main specific feature of the avian genome, a great number of microchromosomes (about 30% of the genome), determines a compositional specialization of the latter. This suggests the existence of not only structural but also functional compartmentalization of the avian genome.  相似文献   

4.
In meiotic prophase I, chromatin fibrils attached to the lateral elements of the synaptonemal complexes (SC) form loops. SCAR DNA (synaptonemal complex associated regions of DNA) is a family of genomic DNA tightly associated with the SC and located at the chromatin loop basements. Using the hybridization technique, it was demonstrated that localization of SCAR DNA was evolutionarily conserved in the isochore compositional fractions of the three examined genomes of warm-blooded vertebrates—human, chicken, and golden hamster. The introduction of the concept of the comparative loops (CL) of DNA that form of chromatin attach to SC in the isochore compositional fractions provided the calculation of their length. An inverse proportional relationship between the length of CL DNA and the GC level in the isochore compartments of the studied warm-blooded vertebrate genomes was revealed. An exception was the GCpoorest L1 isochore family. For different compositional isochores of the human and chicken genomes, the number of genes in the CL DNA was evaluated. A model of the formation of GC-rich isochores in vertebrate genomes, according to which there was not only an increase in the GC level but also the elimination of functionally insignificant noncoding DNA regions, as well as joining of isochores decreasing in size, was suggested.  相似文献   

5.
6.
Vertebrate genomes are mosaics of megabase-size DNA segments with a fairly homogeneous base composition, called isochores. They are divided into five families characterized by different guanine-cytosine (GC) levels and linked to several functional and structural properties. The increased availability of fully sequenced genomes allows the investigation of isochores in several species, assessing their level of conservation across vertebrate genomes. In this work, we characterized the isochores in Bos taurus using the ARS-UCD1.2 genome version. The comparison of our results with the well-studied human isochores and those of other mammals revealed a large conservation in isochore families, in number, average GC levels and gene density. Exceptions to the established increase in gene density with the increase in isochores (GC%) were observed for the following gene biotypes: tRNA, small nuclear RNA, small nucleolar RNA and pseudogenes that have their maximum number in H2 and H1 isochores. Subsequently, we assessed the ontology of all gene biotypes looking for functional classes that are statistically over- or under-represented in each isochore. Receptor activity and sensory perception pathways were significantly over-represented in L1 and L2 (GC-poor) isochores. This was also validated for the horse genome. Our analysis of housekeeping genes confirmed a preferential localization in GC-rich isochores, as reported in other species. Finally, we assessed the SNP distribution of a bovine high-density SNP chip across the isochores, finding a higher density in the GC-rich families, reflecting a potential bias in the chip, widely used for genetic selection and biodiversity studies.  相似文献   

7.
The distribution of various isochore families on mitotic chromosomes of domestic chicken and Japanese quail was studied by the method of fluorescence in situ DNA--DNA hybridization (FISH). DNA of various isochore families was shown to be distributed irregularly and similarly on chromosomes of domestic chicken and Japanese quail. The GC-rich isochore families (H2, H3, and H4) hybridized mainly to microchromosomes and a majority of macrochromosome telomeric regions. In chicken, an intense fluorescence was also in a structural heterochromatin region of the Z chromosome long arm. In some regions of the quail macrochromosome arms, hybridization was also with isochore families H3 and H4. On macrochromosomes of both species, the pattern of hybridization with isochores of the H2 and H3 families resembled R-banding. The light isochores (L1 and L2 families) are mostly detected within macrochromosome internal regions corresponding to G bands, whereas microchromosomes lack light isochores. Although mammalian and avian karyotypes differ significantly in organization, the isochore distribution in genomes of these two lineages of the warm-blooded animals is similar in principle. On macrochromosomes of the two avian species studied, a pattern of isochore distribution resembled that of mammalian chromosomes. The main specific feature of the avian genome, a great number of microchromosomes (about 30% of the genome), determines a compositional specialization of the latter. This suggests the existence of not only structural but also functional compartmentalization of the avian genome.  相似文献   

8.
The isochore organization of the mammalian genome comprises a general pattern and some special patterns, the former being characterized by a wider compositional distribution of the DNA fragments. The large majority of the mammalian genomes belong to the former, and only some groups, such as the Myomorpha sub-order of Rodentia, belong to the latter. Here we describe the compositional organization of the pig (Sus scrofa) genome that belongs to the general mammalian pattern. We investigated (i) the compositional distribution of the genes by analysis of their GC3 levels (the GC levels at the third codon positions), and (ii) the correlation between the GC3 value of orthologous genes from pig and other vertebrates (human, calf, mouse, chicken, and Xenopus). As expected, the highest gene concentration corresponded to the H3 isochore family, and the highest GC3 correlations were observed in the pig/human and pig/calf comparisons. Then we identified, by in situ hybridization of the GC-richest H3 isochores, the pig chromosomal regions endowed by the highest gene-density that largely corresponded to the telomeric chromosomal bands. Moreover, we observed that these gene-rich bands are syntenic with the previously identified GC-richest/gene richest H3+ bands of the human chromosomes. At the cell nucleus level, we observed that the gene-dense region corresponded to the more internal compartment, as previously found in human and avian cell nuclei.  相似文献   

9.
Bernardi G 《Gene》2000,241(1):3-17
The nuclear genomes of vertebrates are mosaics of isochores, very long stretches (>300kb) of DNA that are homogeneous in base composition and are compositionally correlated with the coding sequences that they embed. Isochores can be partitioned in a small number of families that cover a range of GC levels (GC is the molar ratio of guanine+cytosine in DNA), which is narrow in cold-blooded vertebrates, but broad in warm-blooded vertebrates. This difference is essentially due to the fact that the GC-richest 10-15% of the genomes of the ancestors of mammals and birds underwent two independent compositional transitions characterized by strong increases in GC levels. The similarity of isochore patterns across mammalian orders, on the one hand, and across avian orders, on the other, indicates that these higher GC levels were then maintained, at least since the appearance of ancestors of warm-blooded vertebrates. After a brief review of our current knowledge on the organization of the vertebrate genome, evidence will be presented here in favor of the idea that the generation and maintenance of the GC-richest isochores in the genomes of warm-blooded vertebrates were due to natural selection.  相似文献   

10.
The human genome is composed of large sequence segments with fairly homogeneous GC content, namely isochores, which have been linked to many important functions; biological implications of most isochore boundaries, however, remain elusive, partly due to the difficulty in determining these boundaries at high resolution. Using the segmentation algorithm based on the quadratic divergence, we re-determined all 79 boundaries of previously identified human isochores at single-nucleotide resolution, and then compared the boundary coordinates with other genome features. We found that 55.7% of isochore boundaries coincide with termini of repeat elements; 45.6% of isochore boundaries coincide with termini of highly conserved sequences based on alignment of 17 vertebrate genomes, i.e., the highly conserved genome sequence switches to a less or non-conserved one at the isochore boundary; some isochore boundaries coincide with abrupt change of CpG island distribution (note that one boundary can associate with more than one genome feature). In addition, sequences around isochore boundaries are highly conserved. It seems reasonable to deduce that the boundaries of all the isochores studied here would be replication timing sites in the human genome. These results suggest possible key roles of the isochore boundaries and may further our understanding of the human genome organization.  相似文献   

11.
We report here investigations on the isochore pattern and the distribution of genes in the chromosomes of chicken. In spite of large differences in genome size and karyotype, the compositional properties and the gene distribution of the chicken genome are very similar to those recently published for the human genome, which is a good representative of most mammalian genomes. In fact, this similarity, which extends to the relative amounts and, also, to a large extent at least, to the average base composition of isochore families, is most interesting in view of the very large distance of mammals and birds for a common ancestor, which goes back to 310–340 million years ago. This raises important questions about genome evolution in vertebrates.  相似文献   

12.
The human genome is a mosaic of isochores, which are long DNA segments (300 kbp) relatively homogeneous in G+C. Human isochores were first identified by density-gradient ultracentrifugation of bulk DNA, and differ in important features, e.g. genes are found predominantly in the GC-richest isochores. Here, we use a reliable segmentation method to partition the longest contigs in the human genome draft sequence into long homogeneous genome regions (LHGRs), thereby revealing the isochore structure of the human genome. The advantages of the isochore maps presented here are: (1) sequence heterogeneities at different scales are shown in the same plot; (2) pair-wise compositional differences between adjacent regions are all statistically significant; (3) isochore boundaries are accurately defined to single base pair resolution; and (4) both gradual and abrupt isochore boundaries are simultaneously revealed. Taking advantage of the wide sample of genome sequence analyzed, we investigate the correspondence between LHGRs and true human isochores revealed through DNA centrifugation. LHGRs show many of the typical isochore features, mainly size distribution, G+C range, and proportions of the isochore classes. The relative density of genes, Alu and long interspersed nuclear element repeats and the different types of single nucleotide polymorphisms on LHGRs also coincide with expectations in true isochores. Potential applications of isochore maps range from the improvement of gene-finding algorithms to the prediction of linkage disequilibrium levels in association studies between marker genes and complex traits. The coordinates for the LHGRs identified in all the contigs longer than 2 Mb in the human genome sequence are available at the online resource on isochore mapping: http://bioinfo2.ugr.es/isochores.  相似文献   

13.

Background

The very recent availability of fully sequenced individual human genomes is a major revolution in biology which is certainly going to provide new insights into genetic diseases and genomic rearrangements.

Results

We mapped the insertions, deletions and SNPs (single nucleotide polymorphisms) that are present in Craig Venter''s genome, more precisely on chromosomes 17 to 22, and compared them with the human reference genome hg17. Our results show that insertions and deletions are almost absent in L1 and generally scarce in L2 isochore families (GC-poor L1+L2 isochores represent slightly over half of the human genome), whereas they increase in GC-rich isochores, largely paralleling the densities of genes, retroviral integrations and Alu sequences. The distributions of insertions/deletions are in striking contrast with those of SNPs which exhibit almost the same density across all isochore families with, however, a trend for lower concentrations in gene-rich regions.

Conclusions

Our study strongly suggests that the distribution of insertions/deletions is due to the structure of chromatin which is mostly open in gene-rich, GC-rich isochores, and largely closed in gene-poor, GC-poor isochores. The different distributions of insertions/deletions and SNPs are clearly related to the two different responsible mechanisms, namely recombination and point mutations.  相似文献   

14.
Analytical DNA ultracentrifugation revealed that eukaryotic genomes are mosaics of isochores: long DNA segments (>300 kb on average) relatively homogeneous in G+C. Important genome features are dependent on this isochore structure, e.g. genes are found predominantly in the GC-richest isochore classes. However, no reliable method is available to rigorously partition the genome sequence into relatively homogeneous regions of different composition, thereby revealing the isochore structure of chromosomes at the sequence level. Homogeneous regions are currently ascertained by plain statistics on moving windows of arbitrary length, or simply by eye on G+C plots. On the contrary, the entropic segmentation method is able to divide a DNA sequence into relatively homogeneous, statistically significant domains. An early version of this algorithm only produced domains having an average length far below the typical isochore size. Here we show that an improved segmentation method, specifically intended to determine the most statistically significant partition of the sequence at each scale, is able to identify the boundaries between long homogeneous genome regions displaying the typical features of isochores. The algorithm precisely locates classes II and III of the human major histocompatibility complex region, two well-characterized isochores at the sequence level, the boundary between them being the first isochore boundary experimentally characterized at the sequence level. The analysis is then extended to a collection of human large contigs. The relatively homogeneous regions we find show many of the features (G+C range, relative proportion of isochore classes, size distribution, and relationship with gene density) of the isochores identified through DNA centrifugation. Isochore chromosome maps, with many potential applications in genomics, are then drawn for all the completely sequenced eukaryotic genomes available.  相似文献   

15.
《Gene》1997,194(1):107-113
A compositional map of the centromere and of the subcentromeric region of the long arm of human chromosome 21 was established by determining the GC levels (GC is the molar fraction of guanine+cytosine in DNA) of 11 YACs (yeast artificial chromosomes) covering this 13–14 Mb region which extends from the α-satellite sequences of the C(entromeric) band qll.1, through R(everse) band q11.2, to the proximal part of G(iemsa) band q21. The entire region is made up of GC-poor, or L, isochores with only one GC-rich H1 isochore, at least 2 Mb in size, located in band q21. The almost identical GC levels of the centromeric α-satellite repeats (38.5%), of R band q11.2 (39%), and of G bands (38–40%) provide a direct demonstration that base composition cannot be the only cause of the cytogenetic differences between C, G, and the majority of R bands, namely the H3- R bands (which do not contain the GC-richest H3 isochores). The results obtained also show that isochores may be as long as 6 Mb, at least in the GC-poor regions of the genome, and support previous observations suggesting that YACs from isochore borders are unstable and/or difficult to clone. Genes and CpG islands are very rare in the GC-poor region investigated, as expected from the fact that their concentration is proportional to the GC levels of the isochores in which they are contained.  相似文献   

16.
Pavlícek A  Jabbari K  Paces J  Paces V  Hejnar JV  Bernardi G 《Gene》2001,276(1-2):39-45
Alus and LINEs (LINE1) are widespread classes of repeats that are very unevenly distributed in the human genome. The majority of GC-poor LINEs reside in the GC-poor isochores whereas GC-rich Alus are mostly present in GC-rich isochores. The discovery that LINES and Alus share similar target site duplication and a common AT-rich insertion site specificity raised the question as to why these two families of repeats show such a different distribution in the genome. This problem was investigated here by studying the isochore distributions of subfamilies of LINES and Alus characterized by different degrees of divergence from the consensus sequences, and of Alus, LINEs and pseudogenes located on chromosomes 21 and 22. Young Alus are more frequent in the GC-poor part of the genome than old Alus. This suggests that the gradual accumulation of Alus in GC-rich isochores has occurred because of their higher stability in compositionally matching chromosomal regions. Densities of Alus and LINEs increase and decrease, respectively, with increasing GC levels, except for the telomeric regions of the analyzed chromosomes. In addition to LINEs, processed pseudogenes are also more frequent in GC-poor isochores. Finally, the present results on Alu and LINE stability/exclusion predict significant losses of Alu DNA from the GC-poor isochores during evolution, a phenomenon apparently due to negative selection against sequences that differ from the isochore composition.  相似文献   

17.
Abstract

The human genome is composed of large sequence segments with fairly homogeneous GC content, namely isochores, which have been linked to many important functions; biological implications of most isochore boundaries, however, remain elusive, partly due to the difficulty in determining these boundaries at high resolution. Using the segmentation algorithm based on the quadratic divergence, we re-determined all 79 boundaries of previously identified human isochores at single-nucleotide resolution, and then compared the boundary coordinates with other genome features. We found that 55.7% of isochore boundaries coincide with termini of repeat elements; 45.6% of isochore boundaries coincide with termini of highly conserved sequences based on alignment of 17 vertebrate genomes, i.e., the highly conserved genome sequence switches to a less or non-conserved one at the isochore boundary; some isochore boundaries coincide with abrupt change of CpG island distribution (note that one boundary can associate with more than one genome feature). In addition, sequences around isochore boundaries are highly conserved. It seems reasonable to deduce that the boundaries of all the isochores studied here would be replication timing sites in the human genome. These results suggest possible key roles of the isochore boundaries and may further our understanding of the human genome organization.  相似文献   

18.
In this paper, we report investigations on the nested structure, the high-definition mapping, and the molecular basis of the classical Giemsa and Reverse bands in human chromosomes. We found the rules according to which the approximately 3,200 isochores of the human genome are assembled in high (850-band) resolution bands, and the latter in low (400-band) resolution bands, so forming the nested mosaic structure of chromosomes. Moreover, we identified the borders of both sets of chromosomal bands at the DNA sequence level on the basis of our recent map of isochores, which represent the highest-resolution, ultimate bands. Indeed, beyond the 100-kb resolution of the isochore map, the guanine and cytosine (GC) profile of DNA becomes turbulent owing to the contribution of specific sequences such as exons, introns, interspersed repeats, CpG islands, etc. The isochore-based level of definition (100 kb) of chromosomal bands is much higher than the cytogenetic definition level (2-3 Mb). The major conclusions of this work concern the high degree of order found in the structure of chromosomal bands, their mapping at a high definition, and the solution of the long-standing problem of the molecular basis of chromosomal bands, as these could be defined on the basis of compositional DNA properties alone.  相似文献   

19.
Prior to genome sequencing, information on base composition (GC level) and its variation in mammalian genomes could be obtained using density gradient ultracentrifugation. Analyses using this approach led to the conclusion that mammalian genomes are organized into mosaics of fairly homogeneous regions, called isochores. We present an initial compositional overview of the chromosomes of the recently available draft human genome sequence, in the form of color-coded moving window plots and corresponding GC level histograms. Results obtained from the draft human genome sequence agree well with those obtained or deduced earlier from CsCl experiments. The draft sequence now permits the visualization of the mosaic organization of the human genome at the DNA sequence level.  相似文献   

20.
Vertebrate genomes are mosaics of isochores, defined as long (>100 kb) regions with relatively homogeneous within-region base composition. Birds and mammals have more GC-rich isochores than amphibians and fish, and the GC-rich isochores of birds and mammals have been suggested to be an adaptation to homeothermy. If this hypothesis is correct, all poikilothermic (cold-blooded) vertebrates, including the nonavian reptiles, are expected to lack a GC-rich isochore structure. Previous studies using various methods to examine isochore structure in crocodilians, turtles, and squamates have led to different conclusions. We collected more than 6000 expressed sequence tags (ESTs) from the American alligator to overcome sample size limitations suggested to be the fundamental problem in the previous reptilian studies. The alligator ESTs were assembled and aligned with their human, mouse, chicken, and western clawed frog orthologs, resulting in 366 alignments. Analyses of third-codon-position GC content provided conclusive evidence that the poikilothermic alligator has GC-rich isochores, like homeothermic birds and mammals. We placed these results in a theoretical framework able to unify available models of isochore evolution. The data collected for this study allowed us to reject the models that explain the evolution of GC content using changes in body temperature associated with the transition from poikilothermy to homeothermy. Falsification of these models places fundamental constraints upon the plausible pathways for the evolution of isochores. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Reviewing Editor: Dr. Nicolas Galtier  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号