首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1995,131(6):1775-1788
A Saccharomyces cerevisiae gamma-tubulin-related gene, TUB4, has been characterized. The predicted amino acid sequence of the Tub4 protein (Tub4p) is 29-38% identical to members of the gamma-tubulin family. Indirect immunofluorescence experiments using a strain containing an epitope-tagged Tub4p indicate that Tub4p resides at the spindle pole body throughout the yeast cell cycle. Deletion of the TUB4 gene indicates that Tub4p is essential for yeast cell growth. Tub4p-depleted cells arrest during nuclear division; most arrested cells contain a large bud, replicated DNA, and a single nucleus. Immunofluorescence and nuclear staining experiments indicate that cells depleted of Tub4p contain defects in the organization of both cytoplasmic and nuclear microtubule arrays; such cells exhibit nuclear migration failure, defects in spindle formation, and/or aberrantly long cytoplasmic microtubule arrays. These data indicate that the S. cerevisiae gamma- tubulin protein is an important SPB component that organizes both cytoplasmic and nuclear microtubule arrays.  相似文献   

2.
Tub4p is a novel tubulin found in Saccharomyces cerevisiae. It most resembles gamma-tubulin and, like it, is localized to the yeast microtubule organizing centre, the spindle pole body (SPB). In this paper we report the identification of SPC98 as a dosage-dependent suppressor of the conditional lethal tub4-1 allele. SPC98 encodes an SPB component of 98 kDa which is identical to the previously described 90 kDa SPB protein. Strong overexpression of SPC98 is toxic, causing cells to arrest with a large bud, defective microtubule structures, undivided nucleus and replicated DNA. The toxicity of SPC98 overexpression was relieved by co-overexpression of TUB4. Further evidence for an interaction between Tub4p and Spc98p came from the synthetic toxicity of tub4-1 and spc98-1 alleles, the dosage-dependent suppression of spc98-4 by TUB4, the binding of Tub4p to Spc98p in the two-hybrid system and the co-immunoprecipitation of Tub4p and Spc98p. In addition, Spc98-1p is defective in its interaction with Tub4p in the two-hybrid system. We suggest a model in which Tub4p and Spc98p form a complex involved in microtubule organization by the SPB.  相似文献   

3.
4.
M Knop  G Pereira  S Geissler  K Grein    E Schiebel 《The EMBO journal》1997,16(7):1550-1564
Previously, we have shown that the gamma-tubulin Tub4p and the spindle pole body component Spc98p are involved in microtubule organization by the yeast microtubule organizing centre, the spindle pole body (SPB). In this paper we report the identification of SPC97 encoding an essential SPB component that is in association with the SPB substructures that organize the cytoplasmic and nuclear microtubules. Evidence is provided for a physical and functional interaction between Tub4p, Spc98p and Spc97p: first, temperature-sensitive spc97(ts) mutants are suppressed by high gene dosage of SPC98 or TUB4. Second, Spc97p interacts with Spc98p and Tub4p in the two-hybrid system. Finally, immunoprecipitation and fractionation studies revealed complexes containing Tub4p, Spc98p and Spc97p. Further support for a direct interaction of Tub4p, Spc98p and Spc97p comes from the toxicity of strong SPC97 overexpression which is suppressed by co-overexpression of TUB4 or SPC98. Analysis of temperature-sensitive spc97(ts) alleles revealed multiple spindle defects. While spc97-14 cells are either impaired in SPB separation or mitotic spindle formation, spc97-20 cells show an additional defect in SPB duplication. We discuss a model in which the Tub4p-Spc98p-Spc97p complex is part of the microtubule attachment site at the SPB.  相似文献   

5.
Nucleation of microtubules is central to assembly of the mitotic spindle, which is required for each cell division. gamma-Tubulin is a universal component essential for microtubule nucleation from centrosomes. To elucidate the mechanism of microtubule nucleation in budding yeast we reconstituted and characterized the yeast gamma-tubulin complex (Tub4p complex) produced in insect cells. The recombinant complex has the same sedimentation coefficient (11.6 S) as the native complex in yeast cell extracts and contains one molecule of Spc97p, one molecule of Spc98p, and two molecules of Tub4p. The reconstituted Tub4p complex binds preformed microtubules and has a low nucleating activity, allowing us to begin a detailed analysis of conditions that enhance this nucleating activity. We tested whether binding of the recombinant Tub4p complex to the spindle pole body docking protein Spc110p affects its nucleating activity. The solubility of recombinant Spc110p in insect cells is improved by coexpression with yeast calmodulin (Cmd1p). The Spc110p/Cmd1p complex has a small sedimentation coefficient (4.2 S) and a large Stokes radius (14.3 nm), indicative of an elongated structure. The Tub4p complex binds Spc110p/Cmd1p via Spc98p and the K(d) for binding is 150 nM. The low nucleation activity of the Tub4p complex is not enhanced when it is bound to Spc110p/Cmd1p, suggesting that it requires additional components or modifications to achieve robust activity. Finally, we report the identification of a large 22 S Tub4p complex in yeast extract that contains multimers of Spc97p similar to gamma-tubulin ring complexes found in higher eukaryotic cells.  相似文献   

6.
The organization of microtubules is determined in most cells by a microtubule-organizing center, which nucleates microtubule assembly and anchors their minus ends. In Saccharomyces cerevisiae cells lacking She1, cytoplasmic microtubules detach from the spindle pole body at high rates. Increased rates of detachment depend on dynein activity, supporting previous evidence that She1 inhibits dynein. Detachment rates are higher in G1 than in metaphase cells, and we show that this is primarily due to differences in the strengths of microtubule attachment to the spindle pole body during these stages of the cell cycle. The minus ends of detached microtubules are stabilized by the presence of γ-tubulin and Spc72, a protein that tethers the γ-tubulin complex to the spindle pole body. A Spc72-Kar1 fusion protein suppresses detachment in G1 cells, indicating that the interaction between these two proteins is critical to microtubule anchoring. Overexpression of She1 inhibits the loading of dynactin components, but not dynein, onto microtubule plus ends. In addition, She1 binds directly to microtubules in vitro, so it may compete with dynactin for access to microtubules. Overall, these results indicate that inhibition of dynein activity by She1 is important to prevent excessive detachment of cytoplasmic microtubules, particularly in G1 cells.  相似文献   

7.
M Knop  E Schiebel 《The EMBO journal》1997,16(23):6985-6995
Previously, we have shown that the yeast gamma-tubulin, Tub4p, forms a 6S complex with the spindle pole body components Spc98p and Spc97p. In this paper we report the purification of the Tub4p complex. It contained one molecule of Spc98p and Spc97p, and two or more molecules of Tub4p, but no other protein. We addressed how the Tub4p complex binds to the yeast microtubule organizing center, the spindle pole body (SPB). Genetic and biochemical data indicate that Spc98p and Spc97p of the Tub4p complex bind to the N-terminal domain of the SPB component Spc110p. Finally, we isolated a complex containing Spc110p, Spc42p, calmodulin and a 35 kDa protein, suggesting that these four proteins interact in the SPB. We discuss in a model, how the N-terminus of Spc110p anchors the Tub4p complex to the SPB and how Spc110p itself is embedded in the SPB.  相似文献   

8.
In the yeast Saccharomyces cerevisiae, microtubules are organized by the spindle pole body (SPB), which is embedded in the nuclear envelope. Microtubule organization requires the γ-tubulin complex containing the γ-tubulin Tub4p, Spc98p, and Spc97p. The Tub4p complex is associated with cytoplasmic and nuclear substructures of the SPB, which organize the cytoplasmic and nuclear microtubules. Here we present evidence that the Tub4p complex assembles in the cytoplasm and then either binds to the cytoplasmic side of the SPB or is imported into the nucleus followed by binding to the nuclear side of the SPB. Nuclear import of the Tub4p complex is mediated by the essential nuclear localization sequence of Spc98p. Our studies also indicate that Spc98p in the Tub4p complex is phosphorylated at the nuclear, but not at the cytoplasmic, side of the SPB. This phosphorylation is cell cycle dependent and occurs after SPB duplication and nucleation of microtubules by the new SPB and therefore may have a role in mitotic spindle function. In addition, activation of the mitotic checkpoint stimulates Spc98p phosphorylation. The kinase Mps1p, which functions in SPB duplication and mitotic checkpoint control, seems to be involved in Spc98p phosphorylation. Our results also suggest that the nuclear and cytoplasmic Tub4p complexes are regulated differently.  相似文献   

9.
In budding yeast microtubule organizing functions are provided by the spindle pole body (SPB), a multi-layered structure that is embedded in the nuclear envelope throughout the cell cycle. The SPB organizes the nuclear and cytoplasmic microtubules which are spatially and functionally distinct. Microtubule formation in yeast requires the Tub4p-complex, containing the gamma-tubulin Tub4p, and two additional proteins, the SPB components Spc97p and Spc98p. The Tub4p complex assembles in the cytoplasm and is then anchored to the sides of the SPB which organize microtubules. This is achieved by the binding of Spc97p and Spc98p to so-called gamma-tubulin complex binding proteins (GTBPs) at the SPB. Spc72p is the yeast GTBP at the cytoplasmic side of the SPB, while Spc110p is the nuclear GTBP. Both GTBPs control the number of Tub4p complexes associated with the SPB and thereby the number of microtubules formed. In addition, the GTBPs may regulate the activity of the Tub4p complex. Homologues of Spc97p and Spc98p have been identified from yeast to mammalian cells and these are also part of gamma-tubulin complexes, suggesting that these related proteins may also interact with GTBPs at the centrosome. Candidates for GTBPs have been identified in mammalian and insect cells.  相似文献   

10.
BACKGROUND: The regulated assembly of microtubules is essential for bipolar spindle formation. Depending on cell type, microtubules nucleate through two different pathways: centrosome-driven or chromatin-driven. The chromatin-driven pathway dominates in cells lacking centrosomes. RESULTS: Human RHAMM (receptor for hyaluronic-acid-mediated motility) was originally implicated in hyaluronic-acid-induced motility but has since been shown to associate with centrosomes and play a role in astral spindle pole integrity in mitotic systems. We have identified the Xenopus ortholog of human RHAMM as a microtubule-associated protein that plays a role in focusing spindle poles and is essential for efficient microtubule nucleation during spindle assembly without centrosomes. XRHAMM associates both with gamma-TuRC, a complex required for microtubule nucleation and with TPX2, a protein required for microtubule nucleation and spindle pole organization. CONCLUSIONS: XRHAMM facilitates Ran-dependent, chromatin-driven nucleation in a process that may require coordinate activation of TPX2 and gamma-TuRC.  相似文献   

11.
《The Journal of cell biology》1990,111(6):2573-2586
BIK1 function is required for nuclear fusion, chromosome disjunction, and nuclear segregation during mitosis. The BIK1 protein colocalizes with tubulin to the spindle pole body and mitotic spindle. Synthetic lethality observed in double mutant strains containing a mutation in the BIK1 gene and in the gene for alpha- or beta-tubulin is consistent with a physical interaction between BIK1 and tubulin. Furthermore, over- or underexpression of BIK1 causes aberrant microtubule assembly and function, bik1 null mutants are viable but contain very short or undetectable cytoplasmic microtubules. Spindle formation often occurs strictly within the mother cell, probably accounting for the many multinucleate and anucleate bik1 cells. Elevated levels of chromosome loss in bik1 cells are indicative of defective spindle function. Nuclear fusion is blocked in bik1 x bik1 zygotes, which have truncated cytoplasmic microtubules. Cells overexpressing BIK1 initially have abnormally short or nonexistent spindle microtubules and long cytoplasmic microtubules. Subsequently, cells lose all microtubule structures, coincident with the arrest of division. Based on these results, we propose that BIK1 is required stoichiometrically for the formation or stabilization of microtubules during mitosis and for spindle pole body fusion during conjugation.  相似文献   

12.
Summary By following microtubule neoformation after their complete destruction by nocodazole, we analyzed the pattern of microtubule nucleation in protoplasts ofSaccharomyces cerevisiae. Using immunofluorescence, the drug was shown to induce rapid and complete disassembly of both cytoplasmic and spindle microtubules and to selectively block protoplast nuclear division at a defined stage of the cell cycle. Treated protoplasts placed in a drug-free environment recovered a more abundant microtubular system. The majority of microtubules re-formed at SPBs whereas a minority of free-ended microtubules nucleated in the cytoplasm of the protoplasts without any detectable association with recognizable nucleation sites. Random nucleation of free microtubules might be induced by high amounts of unpolymerized tubulin likely to be present in the protoplasts at the moment of drug release.Abbreviations MT microtubule - NOCO nocodazole - SPBs spindle pole bodies - PMSF phenylmethylsulfonyl fluoride - BSA bovine serum albumine - sMT spindle microtubule - cMT cytoplasmic microtubule - MTOC microtubule organizing center  相似文献   

13.
The tinA gene of Aspergillus nidulans encodes a protein that interacts with the NIMA mitotic protein kinase in a cell cycle-specific manner. Highly similar proteins are encoded in Neurospora crassa and Aspergillus fumigatus. TINA and NIMA preferentially interact in interphase and larger forms of TINA are generated during mitosis. Localization studies indicate that TINA is specifically localized to the spindle pole bodies only during mitosis in a microtubule-dependent manner. Deletion of tinA alone is not lethal but displays synthetic lethality in combination with the anaphase-promoting complex/cyclosome mutation bimE7. At the bimE7 metaphase arrest point, lack of TINA enhanced the nucleation of bundles of cytoplasmic microtubules from the spindle pole bodies. These microtubules interacted to form spindles joined in series via astral microtubules as revealed by live cell imaging. Because TINA is modified and localizes to the spindle pole bodies at mitosis, and lack of TINA causes enhanced production of cytoplasmic microtubules at metaphase arrest, we suggest TINA is involved in negative regulation of the astral microtubule organizing capacity of the spindle pole bodies during metaphase.  相似文献   

14.
The ability to fluorescently label microtubules in live cells has enabled numerous studies of motile and mitotic processes. Such studies are particularly useful in budding yeast owing to the ease with which they can be genetically manipulated and imaged by live cell fluorescence microscopy. Because of problems associated with fusing genes encoding fluorescent proteins (FPs) to the native α‐tubulin (TUB1) gene, the FP‐Tub1 fusion is generally integrated into the genome such that the endogenous TUB1 locus is left intact. Although such modifications have no apparent consequences on cell viability, it is unknown if these genome‐integrated FP‐tubulin fusions negatively affect microtubule functions. Thus, a simple, economical and highly sensitive assay of microtubule function is required. Furthermore, the current plasmids available for generation of FP‐Tub1 fusions have not kept pace with the development of improved FPs. Here, we have developed a simple and sensitive assay of microtubule function that is sufficient to identify microtubule defects that were not apparent by fluorescence microscopy or cell growth assays. Using results obtained from this assay, we have engineered a new family of 30 FP‐Tub1 plasmids that use various improved FPs and numerous selectable markers that upon genome integration have no apparent defect on microtubule function.   相似文献   

15.
The yeast Saccharomyces cerevisiae has two genes for α-tubulin, TUB1 and TUB3, and one β-tubulin gene, TUB2. The gene product of TUB3, Tub3, represents ~10% of α-tubulin in the cell. We determined the effects of the two α-tubulin isotypes on microtubule dynamics in vitro. Tubulin was purified from wild-type and deletion strains lacking either Tub1 or Tub3, and parameters of microtubule dynamics were examined. Microtubules containing Tub3 as the only α-tubulin isotype were less dynamic than wild-type microtubules, as shown by a shrinkage rate and catastrophe frequency that were about one-third of that for wild-type microtubules. Conversely, microtubules containing Tub1 as the only α-tubulin isotype were more dynamic than wild-type microtubules, as shown by a shrinkage rate that was 50% higher and a catastrophe frequency that was 30% higher than those of wild-type microtubules. The results suggest that a role of Tub3 in budding yeast is to control microtubule dynamics.  相似文献   

16.
BACKGROUND: Many types of differentiated eukaryotic cells display microtubule distributions consistent with nucleation from noncentrosomal intracellular microtubule organizing centers (MTOCs), although such structures remain poorly characterized. In fission yeast, two types of MTOCs exist in addition to the spindle pole body, the yeast centrosome equivalent. These are the equatorial MTOC, which nucleates microtubules from the cell division site at the end of mitosis, and interphase MTOCs, which nucleate microtubules from multiple sites near the cell nucleus during interphase. RESULTS: From an insertional mutagenesis screen we identified a novel gene, mod20+, which is required for microtubule nucleation from non-spindle pole body MTOCs in fission yeast. Mod20p is not required for intranuclear mitotic spindle assembly, although it is required for cytoplasmic astral microtubule growth during mitosis. Mod20p localizes to MTOCs throughout the cell cycle and is also dynamically distributed along microtubules themselves. We find that mod20p is required for the localization of components of the gamma-tubulin complex to non-spindle pole body MTOCs and physically interacts with the gamma-tubulin complex in vivo. Database searches reveal a family of eukaryotic proteins distantly related to mod20p; these are found in organisms ranging from fungi to mammals and include Drosophila centrosomin. CONCLUSIONS: Mod20p appears to act by recruiting components of the gamma-tubulin complex to non-spindle pole body MTOCs. The identification of mod20p-related proteins in higher eukaryotes suggests that this may represent a general mechanism for the organization of noncentrosomal MTOCs in eukaryotic cells.  相似文献   

17.
M Knop  E Schiebel 《The EMBO journal》1998,17(14):3952-3967
The yeast microtubule organizing centre (MTOC), known as the spindle pole body (SPB), organizes the nuclear and cytoplasmic microtubules which are functionally and spatially distinct. Microtubule organization requires the yeast gamma-tubulin complex (Tub4p complex) which binds to the nuclear side of the SPB at the N-terminal domain of Spc110p. Here, we describe the identification of the essential SPB component Spc72p whose N-terminal domain interacts with the Tub4p complex on the cytoplasmic side of the SPB. We further report that this Tub4p complex-binding domain of Spc72p is essential and that temperature-sensitive alleles of SPC72 or overexpression of a binding domain-deleted variant of SPC72 (DeltaN-SPC72) impair cytoplasmic microtubule formation. Consequently, polynucleated and anucleated cells accumulated in these cultures. In contrast, overexpression of the entire SPC72 results in more cytoplasmic microtubules compared with wild-type. Finally, exchange of the Tub4p complex-binding domains of Spc110p and Spc72p established that the Spc110p domain, when attached to DeltaN-Spc72p, was functional at the cytoplasmic site of the SPB, while the corresponding domain of Spc72p fused to DeltaN-Spc110p led to a dominant-negative effect. These results suggest that different components of MTOCs act as receptors for gamma-tubulin complexes and that they are essential for the function of MTOCs.  相似文献   

18.
gamma-Tubulin is essential for microtubule nucleation in yeast and other organisms; whether this protein is regulated in vivo has not been explored. We show that the budding yeast gamma-tubulin (Tub4p) is phosphorylated in vivo. Hyperphosphorylated Tub4p isoforms are restricted to G1. A conserved tyrosine near the carboxy terminus (Tyr445) is required for phosphorylation in vivo. A point mutation, Tyr445 to Asp, causes cells to arrest prior to anaphase. The frequency of new microtubules appearing in the SPB region and the number of microtubules are increased in tub4-Y445D cells, suggesting this mutation promotes microtubule assembly. These data suggest that modification of gamma-tubulin is important for controlling microtubule number, thereby influencing microtubule organization and function during the yeast cell cycle.  相似文献   

19.
The yeast γ-tubulin Tub4 is assembled with Spc97 and Spc98 into the small Tub4 complex. The Tub4 complex binds via the receptor proteins Spc72 and Spc110 to the spindle pole body (SPB), the functional equivalent of the mammalian centrosome, where the Tub4 complex organizes cytoplasmic and nuclear microtubules. Little is known about the regulation of the Tub4 complex. Here, we isolated the Tub4 complex with the bound receptors from yeast cells. Analysis of the purified Tub4 complex by mass spectrometry identified more than 50 phosphorylation sites in Spc72, Spc97, Spc98, Spc110 and Tub4. To examine the functional relevance of the phosphorylation sites, phospho-mimicking and non-phosphorylatable mutations in Tub4, Spc97 and Spc98 were analyzed. Three phosphorylation sites in Tub4 were found to be critical for Tub4 stability and microtubule organization. One of the sites is highly conserved in γ-tubulins from yeast to human.  相似文献   

20.
Positioning of the mitotic spindle is crucial for proper cell division. In the budding yeast Saccharomyces cerevisiae, two mechanisms contribute to spindle positioning. In the Kar9 pathway, astral microtubules emanating from the daughter-bound spindle pole body interact via the linker protein Kar9 with the myosin Myo2, which moves the microtubule along the actin cables towards the neck. In the dynein pathway, astral microtubules off-load dynein onto the cortical anchor protein Num1, which is followed by dynein pulling on the spindle. Yet, the mechanism by which microtubules target cortical anchor sites is unknown. Here we quantify the pivoting motion of astral microtubules around the spindle pole bodies, which occurs during spindle translocation towards the neck and through the neck. We show that this pivoting is largely driven by the Kar9 pathway. The microtubules emanating from the daughter-bound spindle pole body pivot faster than those at the mother-bound spindle pole body. The Kar9 pathway reduces the time needed for an astral microtubule inside the daughter cell to start pulling on the spindle. Thus, we propose a new role for microtubule pivoting: By pivoting around the spindle pole body, microtubules explore the space laterally, which helps them search for cortical anchor sites in the context of spindle positioning in budding yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号