首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
By genetic manipulation of cloned Escherichia coli galactose operon DNA, we have constructed a new plasmid in which the N terminal segment of the galK gene is replaced by the N terminal of the galE gene. This plasmid encodes a hybrid protein that confers a Gal K+ phenotype on host cells: differences in initiation at the galE translation start point cause different phenotypes. The plasmid has unique restriction sites at the junction of the galE and galK gene segments and thus can be used to replace the N terminal of galK with any other translation start.  相似文献   

4.
An Escherichia coli membrane protein, FtsH, has been implicated in several cellular processes, including integration of membrane proteins, translocation of secreted proteins, and degradation of some unstable proteins. However, how it takes part in such diverse cellular events is largely unknown. We previously isolated dominant negative ftsH mutations and proposed that FtsH functions in association with some other cellular factor(s). To test this proposal we isolated multicopy suppressors of dominant negative ftsH mutations. One of the multicopy suppressor clones contained an N-terminally truncated version of a new gene that was designated fdrA. The FdrA fragment suppressed both of the phenotypes — increased abnormal translocation of a normally cytoplasmic domain of a model membrane protein and retardation of protein export — caused by dominant negative FtsH proteins. The intact fdrA gene (11.9 min on the chromosome) directed the synthesis of a 60 kDa protein in vitro.  相似文献   

5.
Summary At least ten polypeptides larger than 6 kilodaltons (K) are produced in minicells from the miniplasmid pSM1 in vivo. pSM1 (5804 bp) is a small derivative of the drug resistance plasmid R100 (ca. 90 kb) and carries the R100 essential replication region as well as some non-essential functions. Cloned restriction fragments of pSM1 and plasmids with deletions within pSM1 sequences were used to assign eight of the ten oberserved polypeptides to specific coding regions of pSM1. Two of these polypeptides were identified as RepA1 and RepA2, proteins encoded by the essential replication region of pSM1/R100. The nucleotide sequence consisting of 885 bp outside the essential replication region is presented here. This sequence contains an open reading frame,orf4, for a protein 22.9 K in size, and one of the pSM1-encoded polypeptides was identified as theorf4 gene product. Five additional polypeptides were shown to be the products of other open reading frames mapping outside the essential replication region. Specific functions have been assigned to four of these polypeptides and tentatively to the fifth.  相似文献   

6.
Summary The thermosensitivity of dnaA(Ts) mutations can be suppressed by integration of plasmid F (integrative suppression). In the light of the recent finding that F requires DnaA protein for both establishment and maintenance, integrative suppression of 11 dnaA(Ts) mutations by a mini-F, pML31, integrated near oriC was examined. The plating efficiency of integratively suppressed strains was dnaA(Ts) allele-dependent and medium-dependent. The initiation capability of suppressed dnaA(Ts) strains lacking the oriC site and their F- counterparts was determined at various temperatures between 30°C and 42°C. The degree of integrative suppression measured by the initiation capability varied in a dnaA(Ts) allele-dependent manner. F-directed DNA replication was most affected by the dnaA(Ts) mutations mapping in the middle of the gene whereas oriC-dependent replication was most thermosensitive in strains carrying mutations mapping in the carboxy-terminal half of the gene. The results indicated that the integrative suppression by F plasmid is a DnaA-dependent process and suggested that the requirements for DnaA protein in the oriC-dependent replication and F replication processes are qualitatively different.  相似文献   

7.
In Escherichia coli, mutations conferring rifampicin (Rif) resistance map to the rpoB gene, which encodes the 1342-amino acid subunit of RNA polymerase. Almost all sequenced RifR mutations occur within the Rif region, encompassing rpoB codons 500–575. A strong RifR mutation lying outside the Rif region, which changed Val146 to Phe was previously reported, but was not recovered in subsequent studies. Here, we used site-directed mutagenesis followed by selection on Rif to search for RifR mutations in the evolutionarily conserved segment of rpoB around codon 146. Strong RifR mutations were obtained when Val146 was mutated, and several weak RifR mutations were also isolated near position 146. The results define a new, N-terminal cluster of RifR mutations, in addition to the classical central Rif region.  相似文献   

8.
Summary The rnh gene of Escherichia coli encodes RNase H. rnh mutants display at least two phenotypes: (1) they require functional RecBCD enzyme for growth; thus rnh-339::cat recB270 (Ts) and rnh-339::cat recC271 (Ts) strains are temperature sensitive for growth; (2) rnh mutants permit replication that is independent of the chromosomal origin, presumably by failing to remove RNA-DNA hybrids from which extra-original replication can be primed. We report here that manifestation of these two phenotypes occurs at different levels of RNase H function; we have examined partially functional rnh mutants for their in vitro RNase H activity, their ability to rescue viability in recB or recC cells and their ability to permit growth of mutants incapable of using oriC [dnaA (Ts)].  相似文献   

9.
10.
Summary An 8.2 kb fragment of E. coli chromosomal DNA, when cloned in increased copy number, suppresses the dnaA46 mutation, and an abundant protein of about 68 kd (60 kd when measured by us), encoded by the fragment, is essential for the suppression (Takeda and Hirota 1982). Mapping experiments show that the fragment originates from the 94 min region of the chromosome. It encodes several proteins but only one abundant polypeptide of the correct size, the product of the groEL gene. Suppression by the fragment is allele specific; those mutations which map to the centre of the gene are suppressed. Other initiation mutants including dnaA203, dnaA204, dnaA508, dnaAam, dnaC, dnaP and dnaB252 are not suppressed. Most suppressed strains are cold-sensitive suggesting an interaction between the mutant proteins (or their genes) and the suppressing protein or proteins.  相似文献   

11.
Wang Z  Xiang L  Shao J  Wegrzyn G 《Plasmid》2007,57(3):265-274
ColE1 plasmid copy number was analyzed in relaxed (relA) and stringent (relA(+)) Escherichia coli cells after supplementation of culture media with adenosine monophosphate (AMP). When a relaxed E. coli strain bearing ColE1 plasmid was cultured in LB medium for 18 h and induced with AMP for 4h, the plasmid DNA yield was significantly increased, from 2.6 to 16.4 mgl(-1). However no AMP-induced amplification of ColE1 plasmid DNA was observed in the stringent host. Some plasmid amplification was observed in relA mutant cultures in the presence of adenosine, while adenine, ADP, ATP, ribose, potassium pyrophosphate and sodium phosphate caused a minor, if any, increase in ColE1 copy number. A mechanism for amplification of ColE1 plasmid DNA with AMP in relA mutant bacteria is suggested, in which AMP interferes with the aminoacylation of tRNAs, increases the abundance of uncharged tRNAs, and uncharged tRNAs promote plasmid DNA replication. According to this proposal, in relA(+) cells, the AMP induction could not increase ColE1 plasmid copy number because of lower abundance of uncharged tRNAs. Our results suggest that the induction with AMP can be used as an effective method of amplification of ColE1 plasmid DNA in relaxed strains of E. coli.  相似文献   

12.
Summary Escherichia coli Rl is an Ag+-resistant strain that, as we have shown recently, harbours at least two large plasmids, pJT1 (83 kb) and pJT2 (77 kb). Tn5-Mob was introduced into theE. coli Rl host replicon via conjugation on membrane filters. The transfer functions of plasmid RP4-4 were provided in this process and Tn5-Mob clones mated withE. coli C600 yielded Ag+-resistant transconjugants. This mobilization procedure allowed transfer and expression of pJT1 Ag+ resistance inE. coli C600. Prior to use of Tn5-Mob mobilization, it was not possible to transfer Ag+-resistant determinant(s) intoE. coli by conjugation or transformation including high-voltage electroporation.E. coli C600 containing PJTI and PJT2 displayed decreased accumulation of Ag+ similar toE. coli R1.E. coli C600 could not tolerate 0.1 and 0.5 mM Ag+, rapidly accumulated Ag+ and became non-viable. Tn5-Mob mobilization may be useful in the study of metal resistance in bacteria, especially in strains not studied for resistance mechanisms.  相似文献   

13.
Summary A temperature-sensitive mutant (dna-11) with the phenotype of a mutant defective in the initiation of DNA replication, was isolated from an Hfr-like FP2 donor of Pseudomonas aeruginosa. Reversion of its temperature-sensitive character was achieved by integrative suppression rather than by backmutation or an additional suppressor mutation. The dna-11 mutant proved to be helpful in stabilizing the Hfr status of the original host.  相似文献   

14.
LacI mutants obtained following 2 and 6 h of thymine deprivation were cloned and sequenced. The mutational spectra recovered were dissimilar. After 2 h of starvation the majority of mutations were base substitutions, largely G: C→C: G transversions. Frameshift mutations but not deletions were observed. In contrast, following 6 h of starvation, with the exception of the G: C→C: G transversion, all possible base substitutions were recovered. Moreover, several deletions but no frameshift events were observed. The differences in the mutational spectra recovered after two periods of thymine deprivation highlight the role of altered nucleotide pools and the potential influence of DNA replication mechanisms.  相似文献   

15.
Summary The proteins P10 and P12 have been shown to be gene products of a new stability system, ParD, of plasmid R1. It is now shown that an R1 miniplasmid, pAB112, carrying a trans-complementable amber mutation in the gene of the P10 protein, is lethal for the host in the absence of suppression. This lethal effect is suppressed in a supF background and also by deletions in pAB112 that affect the gene of the P12 protein. These data indicate that the P12 protein has a lethal effect on the host and that this effect is neutralized by the P10 protein. The possibility that the stabilization conferred by the ParD system could be due to a counterselection, mediated by P12, of cells that lose the plasmid at cell division, is discussed.  相似文献   

16.
Summary The dnaA167 mutant of Escherichia coli, N167, maintains, on the average, two replicating chromosomes per cell at the perimissive growth temperature of 30°C and only one per cell at the higher permissive growth temperature of 38°C. When the growth temperature of this mutant is changed from 30° to 38°C the cells rapidly readjust their chromosome copy number from two to one. I have examined the kinetics of this transition with reference to DNA replication and cell division. My results indicate that this mutant uncouples cell division from chromosome duplication to achieve the appropriate copy number, suggesting that the dnaA gene product may be involved in the coordination between these two cellular events.  相似文献   

17.
18.
Summary A thermosensitive (ts) parA mutant, MFT110, of Escherichia coli carried at least two ts mutations. The major ts defect, resulting from a mutation mapped originally at 95 min and complemented by pLC8-47, was most probably due to psd. A plasmid carrying the 1.6 kb BamHI-PvuII fragment recloned from pLC8-47 complemented the major ts mutation in MFT110 and psd(ts) in two mutants, but did not correct the Par phenotype of MFT110. The second ts mutation was salt-repairable and mapped at 83 min close to recF and tnaA. This mutation was linked with the Par phenotype as shown unambiguously by 4,6-diamidino-2-phenylindole stained nucleoids in parA mutant cells with the W3110 genetic background. Both salt-repairable ts and Par traits were corrected concomitantly by a plasmid carrying the chromosomal region solely for the gyrB gene. This strongly suggests that parA is an allele of gyrB.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号