首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent experimental evidence suggesting that presynaptic depolarization can evoke transmitter release without calcium influx has been re-examined. The presynaptic terminal of the squid giant synapse can be depolarized by variable amounts while recording presynaptic calcium current under voltage clamp and postsynaptic responses. Small depolarizations open few calcium channels with large single channel currents. Large depolarizations approaching the calcium equilibrium potential open many channels with small single channel currents. When responses to small and large depolarizations eliciting similar total macroscopic calcium currents are compared, the large pulses evoke more transmitter release. This apparent voltage-dependence of transmitter release may be explained by the greater overlap of calcium concentration domains surrounding single open calcium channels when many closely apposed channels open at large depolarizations. This channel domain overlap leads to higher calcium concentrations at transmitter release sites and more release for large depolarizations than for small depolarizations which open few widely dispersed channels. At neuromuscular junctions, a subthreshold depolarizing pulse to motor nerve terminals may release over a thousand times as much transmitter if it follows a brief train of presynaptic action potentials than if it occurs in isolation. This huge synaptic facilitation has been taken as indicative of a direct effect of voltage which is manifest only when prior activity raises presynaptic resting calcium levels. This large facilitation is actually due to a post-tetanic supernormal excitability in motor nerve terminals, causing the previously subthreshold test pulse to become suprathreshold and elicit a presynaptic action potential. When motor nerve terminals are depolarized by two pulses, as the first pulse increases above a certain level it evokes more transmitter release but less facilitation of the response to the second pulse.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Membrane potential was recorded intracellularly near presynaptic terminals of the excitor axon of the crayfish opener neuromuscular junction (NMJ), while transmitter release was recorded postsynaptically. This study focused on the effects of a presynaptic calcium-activated potassium conductance, gK(Ca), on the transmitter release evoked by single and paired depolarizing current pulses. Blocking gK(Ca) by adding tetraethylammonium ion (TEA; 5-20 mM) to a solution containing tetrodotoxin and aminopyridines caused the relation between presynaptic potential and transmitter release to steepen and shift to less depolarized potentials. When two depolarizing current pulses were applied at 20-ms intervals with gK(Ca) not blocked, the presynaptic voltage change to the second (test) pulse was inversely related to the amplitude of the first (conditioning) pulse. This effect of the conditioning prepulse on the response to the test pulse was eliminated by 20 mM TEA and by solutions containing 0 mM Ca2+/1 mM EGTA, suggesting that the reduction in the amplitude of the test pulse was due to activation of gK(Ca) by calcium remaining from the conditioning pulse. In the absence of TEA, facilitation of transmitter release evoked by a test pulse increased as the conditioning pulse grew from -40 to -20 mV, but then decreased with further increase in the conditioning depolarization. A similar nonmonotonic relationship between facilitation and the amplitude of the conditioning depolarization was reported in previous studies using extracellular recording, and interpreted as supporting an additional voltage-dependent step in the activation of transmitter release. We suggest that this result was due instead to activation of a gK(Ca) by the conditioning depolarization, since facilitation of transmitter release increased monotonically with the amplitude of the conditioning depolarization, and the early time course of the decay of facilitation was prolonged when gK(Ca) was blocked. The different time courses for decay of the presynaptic potential (20 ms) and facilitation (greater than 50 ms) suggest either that residual free calcium does not account for facilitation at the crayfish NMJ or that the transmitter release mechanism has a markedly higher affinity or stoichiometry for internal free calcium than does gK(Ca). Finally, our data suggest that the calcium channels responsible for transmitter release at the crayfish NMJ are not of the L, N, or T type.  相似文献   

3.
Emptage NJ  Reid CA  Fine A 《Neuron》2001,29(1):197-208
Evoked transmitter release depends upon calcium influx into synaptic boutons, but mechanisms regulating bouton calcium levels and spontaneous transmitter release are obscure. To understand these processes better, we monitored calcium transients in axons and presynaptic terminals of pyramidal neurons in hippocampal slice cultures. Action potentials reliably evoke calcium transients in axons and boutons. Calcium-induced calcium release (CICR) from internal stores contributes to the transients in boutons and to paired-pulse facilitation of EPSPs. Store depletion activates store-operated calcium channels, influencing the frequency of spontaneous transmitter release. Boutons display spontaneous Ca2+ transients; blocking CICR reduces the frequency of these transients and of spontaneous miniature synaptic events. Thus, spontaneous transmitter release is largely calcium mediated, driven by Ca2+ release from internal stores. Bouton store release is important for short-term synaptic plasticity and may also contribute to long-term plasticity.  相似文献   

4.
n-Aequorin J, a luminescent protein which responds to calcium concentration changes in the order of several hundred micromoles, was injected into the preterminal fiber in the squid giant synapse. The activation of the presynaptic terminal leading to release of transmitter was accompanied by light emission at well-defined sites at the active zone in the presynaptic terminal. Location of these light emission sites was very much the same from one stimulus to the next, indicating that light emission was triggered by the inward calcium current occurring at specific and invariant locations. The distribution, size and number of these QEDs (quantum emission domains) coincides well with the location and number of active zones in the presynaptic terminal. The results imply that transmitter release is triggered by very well-localized calcium concentration changes that may be as high as several hundred micromoles.  相似文献   

5.
We have examined the somatostatin-mediated modulation of acetylcholine release from intact chick embryo choroid tissue and compared these data with those obtained using acutely dissociated neuronal cell bodies from the chick ciliary ganglion. Acetylcholine release, evoked in a calcium-dependent manner by a high potassium (55 mM KCI) stimulation in both preparations, was inhibited almost completely by 100 nM somatostatin. Measurement of intracellular calcium in these neurons revealed that somatostatin blocked the large calcium transient that was observed in control neurons following KCI exposure. The modulatory effect of somatostatin on transmitter release was significantly attenuated by pre-treatment with pharmacologic agents that selectively block cyclic GMP (cGMP)-dependent protein kinase (PKG) or nitric oxide (NO) synthase. It is interesting that this prevention of somatostatin-mediated acetylcholine release inhibition occurred without reversal of the somatostatin-mediated block of the KCl-evoked calcium transient. Furthermore, a NO donor or cGMP analogue could block KCI-evoked acetylcholine release, but only cGMP could reduce the KCI-evoked calcium transient. Although cGMP could reduce the KCI-evoked calcium transient, a cGMP analogue was shown to reduce calcium ionophore-evoked transmitter release. Thus, somatostatin reduces acetylcholine release by modulating calcium influx, but the NO-PKG pathway can inhibit acetylcholine release, and alter somatostatin-mediated inhibition, by affecting transmitter release at some point after calcium entry.  相似文献   

6.
The antagonism between botulinum toxin and calcium in motor nerve terminals   总被引:8,自引:0,他引:8  
The effects of tetraethylammonium and manganese, which modify calcium entry into motor nerve terminals, have been studied during advanced stages of botulinum paralysis. Evidence has been obtained that the voltage-activated calcium current in the nerve endings is not significantly reduced by botulinum toxin. The depression of transmitter release that the toxin produces must arise at a later stage, at an intracellular site of the release mechanism.  相似文献   

7.
1. Voltage clamp studies were performed in squid giant synapse after blockage of the voltage-dependent sodium and potassium conductances. 2. Presynaptic depolarization under these conditions demonstrates the presence of voltage-dependent calcium conductance change for the duration of the voltage step, and a tail current at the break of the pulse. 2. This calcium current triggers a postsynaptic response which can be measured directly at the postsynaptic fiber. 4. These voltage clamp experiments have allowed the development of a mathematical model that describes the kinetics of the calcium current and the relationship between calcium current and transmitter release.  相似文献   

8.
Synthetic calcium buffers, including fluorescent calcium indicators, were microinjected into squid 'giant' presynaptic nerve terminals to investigate the calcium signal that triggers neurotransmitter secretion. Digital imaging methods, applied in conjunction with the fluorescent calcium indicator dye fura-2, reveal that transient rises in presynaptic calcium concentration are associated with action potentials. Transmitter release terminates within 1-2 ms after a train of action potentials, even though presynaptic calcium concentration remains at micromolar levels for many seconds longer. Microinjection of the calcium buffer, EGTA, into the presynaptic terminal has no effect on transmitter release evoked by single presynaptic action potentials. EGTA injection does, however, block the change in calcium concentration measured by fura-2. Therefore, the calcium signal measured by fura-2 is not responsible for triggering release. These results suggest that the rise in presynaptic calcium concentration that triggers release must be highly localized to escape detection with fura-2 imaging. Unlike EGTA, microinjection of BAPTA--a calcium buffer with an equilibrium affinity for calcium similar to that of EGTA--produces a potent, dose-dependent, and reversible block of action-potential evoked transmitter release. The superior ability of BAPTA to block transmitter release apparently is due to the more rapid calcium-binding kinetics of BAPTA compared to EGTA. Because EGTA should bind calcium within a few tens of microseconds under the conditions of our experiments, the inability of EGTA to block release indicates that transmitter release is triggered within a few tens of microseconds after the entry of calcium into the presynaptic terminal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Up and down-regulation of calcium and potassium conductances are associated with several forms of short-term synaptic modulation. Detailed investigation of synaptic plasticity in the marine gastropodAplysia, and in other mollusks, indicates that synaptic transmission can be influenced in a number of ways by modulatory neurotransmitters acting through several second-messenger cascades. Modulation at the synapse itself occurs by means of the regulation of calcium current as well as through effects on processes directly involved in transmitter mobilization and exocytosis. Modulation of potassium current plays a major role in controlling neuronal excitability and may contribute to a lesser extent to the regulation of transmitter release through actions on the resting potential and on action potential configuration.  相似文献   

10.
The effect of zinc ions on presynaptic currents and transmitter release was studied at the neuromuscular junction of the frog cutaneous pectoris muscle preparation with using an extracellular microelectrode. It has been shown that zinc (100 mkM) amplified MEPP frequency at first, but suppressed it later. Zinc affected the presynaptic spike waveform and transmitter release in a concentration-dependent manner. Depending on concentration and time of exposure zinc increased or suppressed transmitter release. Increase of transmitter release was shown to be resulted by blockade voltage gated and calcium activated potassium channels in nerve ending, leading to broad of both presynaptic spike and action potential. Strong change of presynaptic spike waveform after high concentration zinc treatment supposed that under this condition zinc depressed voltage gated calcium and sodium channel leading to decrease of transmitter release. It was concluded that the final and irreversible depression of acetylcholine release by zinc was due to alteration of whole ion conductances in nerve ending and to change of configuration of proteins included in structure of ion channels. It is discussed possible mechanisms of various effects of zinc ions at the neuromuscular synapse.  相似文献   

11.
The protein, β-bungarotoxin, a presynaptic neurotoxin isolated from the venom of the snake Bungarus multicinctus, is known to inhibit mitochondrial function. Within 30 min after adding the toxin to a rat diaphragmphrenic nerve preparation, the quantal content increased tenfold and the frequency of miniature endplate potentials increased fourfold. No increase in miniature endplate potential frequency was seen in the absence of extracellular calcium. Since mitochondria may be involved in regulating intracellular calcium levels, the rate at which the transmitter release is turned off was studied by measuring delayed release in the presence and absence of toxin. Delayed release is elevated about eightfold by the toxin. If delayed release is due to residual calcium, as has been hypothesized, these data may be explained if the toxin does not alter the amount of calcium which enters the terminal, but rather the rate at which that calcium is removed. Alternatively, a calcium-dependent modification of the release process itself might be produced. The eventual reduction in transmitter output did not appear to result from depletion of the terminal of releaseable packets of transmitter, but does require extracellular calcium.  相似文献   

12.
A one-dimensional model of presynaptic calcium diffusion away from the membrane, with cytoplasmic binding, extrusion by a surface pump, and influx during action potentials, can account for the rapid decay of phasic transmitter release and the slower decay of synaptic facilitation following one spike, as well as the very slow decline in total free calcium observed experimentally. However, simulations using this model, and alternative versions in which calcium uptake into organelles and saturable binding are included, fail to preserve phasic transmitter release to spikes in a long tetanus. A three-dimensional diffusion model was developed, in which calcium enters through discrete membrane channels and acts to release transmitter within 50 nm of entry points. Analytic solutions of the equations of this model, in which calcium channels were distributed in active zone patches based on ultrastructural observations, were successful in predicting synaptic facilitation, phasic release to tetanic spikes, and the accumulation of total free calcium. The effects of varying calcium buffering, pump rate, and channel number and distribution were explored. Versions appropriate to squid giant synapses and frog neuromuscular junctions were simulated. Limitations of key assumptions, particularly rapid nonsaturable binding, are discussed.  相似文献   

13.
The modern condition of knowledge about the molecular mechanisms underlying the quantal transmitter release in the central and the peripheric synapses is analysed. The data about the synaptic vesicles types, their forming, transporting to the sites of release at the nerve endings, exo- and endocytosis processes are presented. Ultrastructural and molecular organization of active zone of nerve ending and transmitter release morphofunctional unit--secretosome, which includes synaptic vesicle, exocytosis protein complex and calcium channels, are described. The basic proteins involved in the exo- and endocytosis and their interactions during transmitter release are examined. The role of the intracellular buffer systems, calcium micro- and macrodomains in the quantal transmitter secretion are considered. The reasons of the active zones functional non-uniformity and plasticity and factors reduced transmitter release in the active zone to the single quantum are analysed.  相似文献   

14.
The effect of Ca2+ removal from the external medium on regulation of the release of the synaptic transmitter in the tetanus toxin (TT)-inhibited neuromuscular junctions was studied on a rat phrenicodiaphragmal preparation with the aid of the conventional microelectrode technique of recording synaptic activity. As the external concentration of calcium was decreased from 2 to 0 mM, the frequency of miniature end plate potentials remained unchanged in the preparations isolated 3 to 3.5 h after intramuscular injection of TT (10(5) MLD for mouse). TT considerably reduced activation of the transmitter release, caused in intact synapses by ouabain (0.1 mM) and repetitive stimulation of the diaphragmatic nerve (50 imp/s). The data obtained indicate that in the TT-inhibited motor nerve terminals, the level of the transmitter release does not depend on the external concentration of calcium and that TT damages some of the intracellular sources of calcium.  相似文献   

15.
Following the gradual recognition of the importance of intracellular calcium stores for somatodendritic signaling in the mammalian brain, recent reports have also indicated a significant role of presynaptic calcium stores. Ryanodine-sensitive stores generate local, random calcium signals that shape spontaneous transmitter release. They amplify spike-driven calcium signals in presynaptic terminals, and consequently enhance the efficacy of transmitter release. They appear to be recruited by an association with certain types of calcium-permeant ion channels, and they induce specific forms of synaptic plasticity. Recent research also indicates a role of inositoltrisphosphate-sensitive presynaptic calcium stores in synaptic plasticity.  相似文献   

16.
Depolarizing stimuli increase the release of transmitter substances from cultured PC12 pheochromocytoma cells and reaggregate cultures of mouse mesencephalic dopamine neurones. We measured the stimulated release of (3H) norepinephrine and (3H) dopamine from these systems respectively. In the cultured mouse dopaminergic neurones, several organic calcium channel blockers including nitrendipine, D-600, verapamil and diltiazem were unable to inhibit potassium-evoked transmitter release. However, release was blocked by 3 mM cobalt. The novel dihydropyridine calcium channel agonist BAY K8644 also had no effect on basal or evoked dopamine release. In contrast, BAY K8644 greatly stimulated the potassium-evoked release of (3H) norepinephrine from PC12 cells. The BAY K8644 enhanced release could be blocked by the dihydropyridine antagonist nitrendipine. These results indicate that while stimulus-secretion coupling in the PC12 cell line involves dihydropyridine sensitive calcium channels, this is not the case in primary cultured neurones.  相似文献   

17.
A three-dimensional presynaptic calcium diffusion model developed to account for characteristics of transmitter release was modified to provide for binding of calcium to a receptor and subsequent triggering of exocytosis. When low affinity (20 microM) and rapid kinetics were assumed for the calcium receptor triggering exocytosis, and stimulus parameters were selected to match those of experiments, the simulations predicted a virtual invariance of the time course of transmitter release to paired stimulation, stimulation with pulses of different amplitude, and stimulation in different calcium solutions. The large temperature sensitivity of experimental release time course was explained by a temperature sensitivity of the model's final rate limiting exocytotic process. Inclusion of calcium tail currents and a saturable buffer with finite binding kinetics resulted in high peak calcium transients near release sites, exceeding 100 microM. Models with a single class of calcium binding site to the secretory trigger molecule failed to produce sufficient synaptic facilitation under this condition. When at least one calcium ion binds to a different site having higher affinity and slow kinetics, facilitation again reaches levels similar to those seen experimentally. It is possible that the neurosecretory trigger molecule reacts with calcium at more than one class of binding site.  相似文献   

18.
In experiments on the frog cutaneous pectoris muscle in cases of different external calcium concentrations, using extracellular recording technique, processes of facilitation and depression of transmitter release during the high-frequency stimulation were investigated. On the ground of experiments using intracellular mobile calcium buffers BAPTA-AM and EGTA-AM, it was proposed that at least two (low- and high-affinity) calcium-binding sites underlie the facilitation. Both the facilitation and the depression were accompanied by such transformations of underlied of nerve ending responses as changes of the third phase amplitude. Application of potassium channel blockers allowed us to reveal the significant contribution of changes of duration of the AP repolarisation phase and, accordingly, the changes of magnitude of calcium influx to development of facilitation and depression of transmitter release. It was also revealed that, during the high-frequency rhythmic stimulation, the increase of asynchrony of transmitter release leading to decrease of facilitation and increase of depression occurred. It was concluded that the forms of short-term synaptic plasticity--facilitation and depression, were caused by various presynaptic mechanisms: the increase of concentration of "local" and accumulation of "residual" calcium, the changes of calcium influx, increase of temporal course of secretion, the impairment of equilibrium between the depletion and restoration of mediator supply. Due to some of these processes and specific conditions of synapse functioning, the facilitation of the depression of transmitter release occurred.  相似文献   

19.
Small presynaptic conditioning hyperpolarizing pulses reduce transmitter release to a depolarizing stimulus by a substantial amount, with little effect on release by a subsequent depolarization. This result, obtained at neuromuscular junctions and the squid giant synapse, has been offered as a disproof of the calcium hypothesis of transmitter release or the residual calcium hypothesis of synaptic facilitation. However, calculations based on several formulations of these hypotheses are shown to be consistent with the experimental results, and no fundamental modification of the hypotheses is necessary.  相似文献   

20.
Synaptosomes isolated from guinea pig brain cortex were stimulated electrically in a medium containing [32P]-orthophosphate. The electrical stimulation caused increased labelling of phosphatidic acid in a synaptic vesicle fraction prepared by osmotic shock of the incubated synaptosomes. Electrical stimulation also provokes transmitter release from the synaptosomes. Both increased phosphatidate labelling and transmitter release required calcium ions in the medium. The effects are discussed in relation to earlier work with acetylcholine and the possible involvement of membrane phosphatidic acid in transmitter release by exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号