首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation pathways of benzoate at high concentration in Pseudomonas putida P8 were directly elucidated through mass spectrometric identification of some key catabolic enzymes. Proteins from P. putida P8 grown on benzoate or succinate were separated using two-dimensional gel electrophoresis. For cells grown on benzoate, eight distinct proteins, which were absent in the reference gel patterns from succinate-grown cells, were found. All the eight proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as catabolic enzymes involved in benzoate degradation. Among them, CatB (EC5.5.1.1), PcaI (EC2.8.3.6), and PcaF (EC2.3.1.174) were the enzymes involved in the ortho-cleavage pathway; DmpC (EC1.2.1.32), DmpD (EC3.1.1.-), DmpE (EC4.2.1.80), DmpF (EC1.2.1.10), and DmpG (EC4.1.3.-) were the meta-cleavage pathway enzymes. In addition, enzyme activity assays showed that the activities of both catechol 1,2-dioxygenase (C12D; EC1.13.11.1) and catechol 2,3-dioxygenase (C23D; EC1.13.11.2) were detected in benzoate-grown P. putida cells, undoubtedly suggesting the simultaneous expression of both the ortho- and the meta-cleavage pathways in P. putida P8 during the biodegradation of benzoate at high concentration.  相似文献   

2.
3.
恶臭假单胞菌ND6菌株的萘降解质粒pND6-1中编码儿茶酚1,2-双加氧酶的catA基因在大肠杆菌中进行了克隆和表达,并研究表达产物的酶学性质。结果表明:酶的Km为0.019μmol/L,Vmax为1.434μmol/(min.mg);具有很好的耐热性,在50℃保温45min后仍能够保留酶活力的93.7%;Fe2+对酶活性有显著的促进作用,其比活力是对照反应的292%;酶对4-氯儿茶酚的催化活性非常低,属于Ⅰ型儿茶酚1,2-双加氧酶。以萘为底物生长时,ND6菌株的细胞提取液中既存在催化邻位裂解途径的儿茶酚1,2-双加氧酶活性,也存在催化间位裂解途径的儿茶酚2,3-双加氧酶活性。以苯甲酸、对羟基苯甲酸和苯乙酸为唯一碳源生长时,ND6菌株细胞提取液的儿茶酚1,2-双加氧酶活性远远大于儿茶酚2,3-双加氧酶活性。表明ND6菌株既能通过儿茶酚间位裂解途径降解萘,也能通过儿茶酚邻位裂解途径降解萘,而以苯甲酸、对羟基苯甲酸和苯乙酸为诱导物时只利用儿茶酚邻位裂解途径。  相似文献   

4.
Catechol 2,3-dioxygenase (C23O), an extradiol-type dioxygenase cleaving the aromatic C—C bond at the meta-position of dihydroxylated aromatic substrates, catalyzes the conversion of catechol to 2-hydroxy-muconic semialdehyde. Based on a curing experiment, PCR identification, and Southern hybridization, the gene responsible for C23O was localized on a 3.5-kb EcoRI/BamHI fragment and cloned from Pseudomonas aeruginosa ZD 4-3, which was able to degrade both single and bicyclic compounds via a meta-cleavage path-way. A complete nucleotide sequence analysis of the C23O revealed that it has one ORF, which showed a strong overall amino acid similarity to the known gram-negative bacterial mesophilic C23Os. The alignment analysis indicated a distinct difference between the C23O in this study and the 2,3-dihydroxybiphenyl dioxygenases that cleave bicyclic aromatic compounds. The heterogeneous expression of the pheB gene in E. Coli BL21(DE3) demonstrated that this C23O possesses a meta-cleavage activity.From Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 802–809.Original English Text Copyright © 2004 by Chen, Liu, Zhu, Jin.This article was submitted by the authors in English.  相似文献   

5.
A thermophilic Bacillus strain NG80-2 growing within the temperature range of 45–73°C (optimum at 65°C) was isolated from a deep subterranean oil-reservoir in northern China. The strain was able to utilize crude oil and liquid paraffin as the sole carbon sources for growth, and the growth with crude oil was accompanied by the production of an unknown emulsifying agent. Further examination showed that NG80-2 degraded and utilized only long-chain (C15–C36) n-alkanes, but not short-chain (C8–C14) n-alkanes and those longer than C40. Based on phenotypic and phylogenic analyses, NG80-2 was identified as Geobacillus thermodenitrificans. The strain NG80-2 may be potentially used for oily-waste treatment at elevated temperature, a condition which greatly accelerates the biodegradation rate, and for microbial enhancing oil recovery process.Lei Wang, Yun Tang and Shuo Wang contributed equally to this study.  相似文献   

6.
A bacterial strain able to degrade dichloromethane (DCM) as the sole carbon source was isolated from a wastewater treatment plant receiving domestic and pharmaceutical effluent. 16S rDNA studies revealed the strain to be a Xanthobacter sp. (strain TM1). The new isolated strain when grown aerobically on DCM showed Luong type growth kinetics, with μmax of 0.094 h−1 and S m of 1,435 mg l−1. Strain TM1 was able to degrade other aromatic and aliphatic halogenated compounds, such as halobenzoates, 2-chloroethanol and dichloroethane. The gene for DCM dehalogenase, which is the key enzyme in DCM degradation, was amplified through PCR reactions. Strain TM1 contains type A DCM dehalogenase (dcmAa), while no product could be obtained for type B dehalogense (dcmAb). The sequence was compared against 12 dcmAa from other DCM degrading strains and 98% or 99% similarity was observed with all other previously isolated DCM dehalogenase genes. This is the first time a Xanthobacter sp. is reported to degrade DCM.  相似文献   

7.
The genes responsible for the degradation of 2,4-dichlorophenoxyacetate (2,4-D) by -Proteobacteria have previously been difficult to detect by using gene probes or polymerase chain reaction (PCR) primers. PCR products of the chlorocatechol 1,2-dioxygenase gene, tfdC, now allowed cloning of two chlorocatechol gene clusters from the Sphingomonas sp. strain TFD44. Sequence characterization showed that the first cluster, tfdD,RFCE, comprises all the genes necessary for the conversion of 3,5-dichlorocatechol to 3-oxoadipate, including a presumed regulatory gene, tfdR, of the LysR-type family. The second gene cluster, tfdC2E2F2, is incomplete and appears to lack a chloromuconate cycloisomerase gene and a regulatory gene. Purification and N-terminal sequencing of selected enzymes suggests that at least representatives of both gene clusters (TfdD of cluster 1 and TfdC2 of cluster 2) are induced during the growth of strain TFD44 with 2,4-D. A mutant constructed to contain an insertion in the chloromuconate cycloisomerase gene tfdD still was able to grow with 2,4-D, but more slowly and with a longer lag phase. This, and the detection of additional activity peaks during protein purification suggest that strain TFD44 harbors at least another chloromuconate cycloisomerase gene. The sequence of the tfdCE region was almost identical to that of a partially characterized chlorocatechol catabolic gene cluster of Sphingomonas herbicidovorans MH, whereas the sequence of the tfdC2E2F2 cluster was different. The similarity of the predicted proteins of the tfdD,RFCE and tfdC2E2F2 clusters to known sequences of other Proteobacteria in the database ranged from 42 to 61% identical positions for the first cluster and from 45.5 to 58% identical positions for the second cluster. Between both clusters, the similarities of their predicted proteins ranged from 44.5 to 64% identical positions. Thus, both clusters (together with those of S. herbicidovorans MH) represent deep-branching lines in the respective dendrograms, and the sequence information will help future primer design for the detection of corresponding genes in the environment.  相似文献   

8.
【目的】筛选和鉴定有木质纤维素降解能力的1株细菌,测定其相关酶活力并进行全基因组分析,为构建木质纤维素降解工程菌提供依据。【方法】采用3种木质素类似物(天青-B;酚红;愈创木酚)的脱色/染色法,从腐木和被枝叶覆盖的土壤中分离和筛选出1株具有较强木质纤维素降解能力的细菌。通过16S r RNA基因和全基因组序列分析对该菌进行种属鉴定。使用紫外分光光度法测定其锰过氧化物酶(Mn P)、漆酶(Lac)、羧甲基纤维素酶(CMCase)以及滤纸酶(FPA)活力,了解该菌相关酶活力大小在一定时间内的变化趋势。使用Illumina Miseq和454 GS Junior测序平台获取该菌的全基因组序列,将其全基因组序列经过注释的基因蛋白质序列提交COG和KEGG数据库进行BLASTp比对分析,确定该菌潜在的重要酶类和代谢途径,并对部分注释基因进行定量RT-PCR验证。【结果】筛选得到1株优势菌株S12,该菌经鉴定后命名为解鸟氨酸拉乌尔菌(Raoultella ornithinolytica)。在液体CMC-Na培养基中发酵28 h,菌体生长达到稳定期,纤维素降解相关酶活力也在此时达到峰值。生物信息学分析结果表明,菌株S12具有木质素降解通路中重要酶类的编码基因,如过氧化物酶、Fe-Mn型超氧化物歧化酶、邻苯二酚1,2-双加氧酶和原儿茶酸-3,4-双加氧酶等,这些基因在以碱性木质素为碳源的培养条件下表达量不同程度地高于以葡萄糖为碳源的培养条件。另外,菌株S12具备完整的纤维素降解和乙醇生成通路。【结论】本研究首次揭示了Raoultella ornithinolytica S12具备有效的木质纤维素降解性能,这对于推动木质纤维素应用产业的发展具有重要意义。  相似文献   

9.
Bai Y  Sun Q  Zhao C  Wen D  Tang X 《Biodegradation》2008,19(6):915-926
A bacterial strain using pyridine as sole carbon, nitrogen and energy source was isolated from the activated sludge of a coking wastewater treatment plant. By means of morphologic observation, physiological characteristics study and 16S rRNA gene sequence analysis, the strain was identified as the species of Paracoccus. The strain could degrade 2,614 mg l−1 of pyridine completely within 49.5 h. Experiment designed to track the metabolic pathway showed that pyridine ring was cleaved between the C2 and N, then the mineralization of the carbonous intermediate products may comply with the early proposed pathway and the transformation of the nitrogen may proceed on a new pathway of simultaneous heterotrophic nitrification and aerobic denitrification. During the degradation, NH3-N occurred and increased along with the decrease of pyridine in the solution; but the total nitrogen decreased steadily and equaled to the quantity of NH3-N when pyridine was degraded completely. Adding glucose into the medium as the extra carbon source would expedite the biodegradation of pyridine and the transformation of the nitrogen. The fragments of nirS gene and nosZ gene were amplified which implied that the BW001 had the potential abilities to reduce NO2 to NO and/or N2O, and then to N2.  相似文献   

10.
Ai H  Zhou J  Lu H  Guo J 《Biodegradation》2009,20(1):67-77
A novel salt-tolerant strain DUT_AHX, which was capable of utilizing nitrobenzene (NB) as the sole carbon source, was isolated from NB-contaminated soil. Furthermore, it was identified as Streptomyces albidoflavus on the basis of physiological and biochemical tests and 16S ribosomal DNA (rDNA) sequence analysis. It can grow in the presence of NaCl up to 12% (w/v) or NB up to 900 mg/l in mineral salts basal (MSB) medium. The exogenously added osmoprotectants such as glycin, glutamic acid, proline, betaine and ectoine can improve growth of strain DUT_AHX in the presence of 10% (w/v) NaCl. NB-grown cells of strain DUT_AHX in modified MSB medium can degrade NB with the concomitant release of ammonia. Moreover, crude extracts of NB-grown strain DUT_AHX mainly contained 2-aminophenol 1,6-dioxygenase activity. These indicate that NB degradation by strain DUT_AHX might involve a partial reductive pathway. The proteins induced by salinity stress or NB were analyzed by native-gradient polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)-PAGE. In NB-induced proteins de novo, 141 kDa protein on the native-gradient PAGE gel was excised and electroeluted. Furthermore, enzyme tests exhibit the 2-aminophenol 1,6-dioxygenase activity of purified 141 kDa protein is 11-fold that of the cell-free extracts. The exploitation of strain DUT_AHX in salinity stress will be a remarkable improvement in NB bioremediation and wastewater treatment in high salinity.  相似文献   

11.
Pseudomonas sp. strain DJ-12 is a bacterial isolate capable of degrading 4-chlorobiphenyl (4CBP) as a carbon and energy source. The catabolic degradation of 4CBP by the strain DJ-12 was studied along with the genetic organization of the genes responsible for the crucial steps of the catabolic degradation. The catabolic pathway was characterized as being conducted by consecutive reactions of themeta-cleavage of 4CBP, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, andmeta-cleavage of protocatechuate. ThepcbC gene responsible for themeta-cleavage of 4CBP only showed a 30 to 40% homology in its deduced amino acid sequence compared to those of the corresponding genes from other strains. The amino acid sequence of 4CBA-CoA dechlorinase showed an 86% homology with that ofPseudomonas sp. CBS3, yet only a 50% homology with that ofArthrobacter spp. However, thefcb genes for the hydrolytic dechlorination of 4CBA inPseudomonas sp. DJ-12 showed an uniquely different organization from those of CBS3 and other reported strains. Accordingly, these results indicate that strain DJ-12 can degrade 4CBP completely viameta-cleavage and hydrolytic dechlorination using enzymes that are uniquely different in their amino acid sequences from those of other bacterial strains with the same degradation activities.  相似文献   

12.
Farrell A  Quilty B 《Biodegradation》1999,10(5):353-362
A mixed microbial community, specially designed todegrade a wide range of substituted aromaticcompounds, was examined for its ability to degrademono-chlorophenols as sole carbon source in aerobicbatch cultures. The mixed culture degraded 2-, 3-, and4 -chlorophenol (1.56 mM) via a meta- cleavagepathway. During the degradation of 2- and3-chlorophenol by the mixed culture, 3-chlorocatecholproduction was observed. Further metabolism was toxicto cells as it led to inactivation of the catechol2,3-dioxygenase enzyme upon meta- cleavage of3-chlorocatechol resulting in incomplete degradation.Inactivation of the meta- cleavage enzyme led toan accumulation of brown coloured polymers, whichinterfered with the measurement of cell growth usingoptical denstiy. Degradation of 4-chlorophenol by themixed culture led to an accumulation of5-chloro-2-hydroxymuconic semialdehyde, themeta- cleavage product of 4-chlorocatechol. Theaccumulation of this compound did not interfere withthe measurement of cell growth using optical density.5-chloro-2-hydroxymuconic semialdehyde was furthermetabolized by the mixed culture with a stoichiometricrelease of chloride, indicating complete degradationof 4-chlorophenol by the mixed culture via ameta- cleavage pathway.  相似文献   

13.
Pis 30, a gene highly expressed in Brassica napus pistils and encoding a novel proline-rich protein was isolated and characterized. Sequences homologous to the Brassica Pis 30 gene were found only in Arabidopsis thaliana. The Pis 30 gene encodes a mature protein of 8.4 kDa with no previously characterized protein domains and whose function remains unknown. PIS 30 contains especially high levels of Pro (33%), but also of Leu (14%), Phe (10%) and Ser (6%). Although it is a proline-rich protein, PIS 30 shows only limited similarity to previously characterized plant proline-rich proteins. When compared to the stigma-specific activity of the B. napus SLR1 gene promoter in pistils of transgenic Arabidopsis, an 808 bp Pis 30 promoter fragment directed -glucuronidase expression primarily in the ovary, as well as in the stigma.  相似文献   

14.
We have extended to about 75 the number of genes mapped on the Chlamydomonas moewusii and Chlamydomonas reinhardtii chloroplast DNAs (cpDNAs) by partial sequencing of the very closely related C. eugametos and C. moewusii cpDNAs and by hybridizations with Chlamydomonas chloroplast gene-specific sequences. Only four of these genes (tscA and three reading frames) have not been identified in any other algal cpDNAs and thus may be specific to Chlamydomonas. Although the C. moewusii and C. reinhardtii cpDNAs differ by complex sequence rearrangements, 38 genes scattered throughout the genome define 12 conserved clusters of closely linked loci. Aside from the rRNA operon, four of these gene clusters share similarity to evolutionarily primitive operons found in other cpDNAs, representing in fact remnants of these operons. Our results thus indicate that most of the ancestral bacterial operons that characterize the chloroplast genome organization of land plants and early-diverging photosynthetic eukaryotes have been disrupted before the emergence of the polyphyletic genus Chlamydomonas. All gene rearrangements between the C. moewusii and C. reinhardtii cpDNAs, with the exception of those accounting for the relocations of atpA, psbI and rbcL, occurred within corresponding regions of the genome. One of these rearrangements seems to have led to disruption of the ancestral region containing rpl23, rpl2, rps19, rpl16, rpl14, rpl5, rps8 and the psaA exon 1. This gene cluster, which bears striking similarity to the Escherichia coli S10 and spc operons, spans a continuous DNA segment in C. reinhardtii, while it maps to two separate fragments in C. moewusii.  相似文献   

15.
Summary An open reading frame (ORF) in the same operon as, but downstream of, vnfH in Azotobacter vinelandii can code for a ferredoxin-like protein. The role this ORF may play in the vnf (vanadium-dependent alternative) pathway of nitrogen fixation was investigated. Site-directed mutagenesis was used to alter one base in each of the codons specifying amino acids 18 and 19 generating a unique BglII site. A kanamycin resistance cartridge was cloned into the BglII site. This construct was mobilized into A. vinelandii CA12 ( nifHDK) strain by conjugation and the mutation was introduced into the genome by marker exchange. The resulting mutant was unable to fix nitrogen under conditions in which the vnf pathway of nitrogen fixation operates. This suggests that this ORF is functional and is essential for the vanadium-dependent alternative pathway of nitrogen fixation in A. vinelandii.  相似文献   

16.
A cDNA clone, Sta 44-4, corresponding to a mRNA highly expressed in Brassica napus cv. Westar stamens, was isolated by differential screening and characterized. Northern blot and in situ analyses demonstrated that Sta 44-4 is synthesized in pollen beginning at the late uninucleate stage and reaches a maximum in trinucleate microspores. Sta 44-4 displayed significant sequence similarity to known pollen polygalacturonase genes. The B. napus pollen polygalacturonase gene was shown to be part of a small gene family and to display some polymorphism among different cultivars.  相似文献   

17.
The MSI3 gene was isolated as a multicopy suppressor of the heat shock-sensitive phenotype of the iral mutation, which causes hyperactivation of the RAS-cAMP pathway. Overexpression of MSI3 also suppresses the heat shock-sensitive phenotype of the bcyl mutant. Determination of the DNA sequence of MSI3 revealed that MSI3 can encode a 77.4 kDa protein related to the HSP70 family. The amino acid sequence of Msi3p is about 30% identical to that of the Ssalp of Saccharomyces cerevisiae. This contrasts with the finding that members of the HSP70 family generally show at least 50% amino acid identity. The consensus nucleotide sequence of the heat shock element (HSE) was found in the upstream region of MSI3. Moreover, the steady-state levels of the MSI3 mRNA and protein were increased upon heat shock. These results indicate that the MSI3 gene encodes a novel HSP70-like heat shock protein. Disruption of the MSI3 gene was associated with a temperature sensitive growth phenotype but unexpectedly, thermotolerance was enhanced in the disruptant.  相似文献   

18.
In several sulfate-reducing bacteria capable of complete oxidation of acetate (or acetyl CoA), the citric acid cycle is not operative. No 2-oxoglutarate dehydrogenase activity was found in these organisms, and the labelling pattern of oxaloacetate excludes its synthesis via 2-oxo-glutarate. These sulfate-reducers contained, however, high activities of the enzymes carbon monoxide dehydrogenase and formate dehydrogenase and catalyzed an isotope exchange between CO2 and the carboxyl group of acetate (or acetyl CoA), showing a direct C-C-cleavage of activated acetic acid. These findings suggest that in the investigated sulfate-reducers acetate is oxidized to CO2 via C1 intermediates. The proposed pathway provides a possible explanation for the reported different fluoroacetate sensitivity of acetate oxidation by anaerobic bacteria, for mini-methane formation, as well as for the postulated anaerobic methane oxidation by special sulfate-reducers.  相似文献   

19.
A new mesophilic sulfate-reducing bacterium, strain Groll, was isolated from a benzoate enrichment culture inoculated with black mud from a freshwater ditch. The isolate was a spore-forming, rod-shaped, motile, gram-positive bacterium. This isolate was able of complete oxidation of several aromatic compounds including phenol, catechol, benzoate, p-and m-cresol, benzyl alcohol and vanillate. With hydrogen and carbon dioxide, formate or O-methylated aromatic compounds, autotrophic growth during sulfate reduction or homoacetogenesis was demonstrated. Lactate was not used as a substrate. SO inf4 sup2- , SO inf3 sup2- , and S2O inf3 sup2- were utilized as electron acceptors. Although strain Groll originated from a freshwater habitat, salt concentrations of up to 30 g·l-1 were tolerated. The optimum temperature for growth was 35–37°C. The G+C content of DNA was 42.1 mol%. This isolate is described as a new species of the genus Desulfotomaculum.  相似文献   

20.
Summary Paecilomyces sp. and Pseudomonas syringae pv myricae (CSA105) were isolated from sediment core of drainage of the pulp and paper mill industry. Fungi and bacteria were applied for treatment of pulp and paper mill effluent in a two-step and three-step fixed film sequential bioreactor containing sand and gravel at the bottom of the reactor for immobilization of microbial cells. Degradation of chlorinated phenols and formation of their metabolites were determined by high performance liquid chromatography. The microbes exhibited significant reduction in colour (88.5%), lignin (79.5%), chemical oxygen demand (87.2%) and phenol (87.7%) in two-step aerobic sequential bioreactor, and colour (87.7%), lignin (76.5%), chemical oxygen demand (83.9%) and phenol (87.2%) in three-step anaerobic-aerobic sequential bioreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号