首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Physical map of the genome of Rhodobacter capsulatus SB 1003.   总被引:4,自引:0,他引:4       下载免费PDF全文
A map of the chromosome of Rhodobacter capsulatus was constructed by overlapping the large restriction fragments generated by endonucleases AseI and XbaI. The analyses were done by hybridization of single fragments with the restriction fragments blotted from pulsed-field gels and by grouping cosmids of a genomic library of R. capsulatus into contigs, corresponding to the restriction fragments, and further overlapping of the contigs. A technical difficulty due to a repeated sequence made it necessary to use hybridization with cloned genes and prior knowledge of the genetic map in order to close the physical circle in a unique way. In all, 41 restriction sites were mapped on the 3.6-Mb circular genome and 22 genes were positioned at 26 loci of the map. Cosmid clones were grouped in about 80 subcontigs, forming two groups, one corresponding to the chromosome of R. capsulatus and the other corresponding to a 134-kb plasmid. cos site end labeling and partial digestion of cosmids were used to construct a high-resolution EcoRV map of the 134-kb plasmid. The same method can be extended to the entire chromosome. The cosmid clones derived in this work can be used as a hybridization panel for the physical mapping of new genes as soon as they are cloned.  相似文献   

2.
A physical map of the chromosome of Streptomyces lividans 66 ZX7 was constructed by ordering the macrorestriction fragments generated from the genomic DNA with the restriction enzymes AseI and DraI. AseI and DraI linking cosmids (i.e., recombinant cosmids including either AseI or DraI sites) were isolated from a gene bank and used as hybridization probes against Southern transfers of pulsed-field gel electrophoresis (PFGE) restriction patterns. The DraI sites were precisely mapped by PFGE analyses of AseI-DraI double digests and hybridization with the AseI junctions. The 16 AseI and 7 DraI fragments were aligned as a single chromosome of about 8,000 kb. The data supported the interpretation that the chromosome is a linear structure. The related strain Streptomyces coelicolor A3(2) M145, recently mapped by H. Kieser, T. Kieser, and D. A. Hopwood (J. Bacteriol. 174:5496-5507, 1992), was compared with S. lividans at the level of the genomic structure by hybridizing the linking cosmids to Southern transfers of PFGE patterns. In spite of little apparent similarity in their restriction patterns, the comparison of the physical maps revealed a common structure with an identical ordering of the cosmid sequences. This conservation of the map order was further confirmed by assigning genetic markers (i.e., cloned genes and DNA elements relevant to the unstable region) to the AseI fragments.  相似文献   

3.
To obtain new RFLP markers on human chromosome 11 for a high-resolution map, we constructed a cosmid library from a Chinese hamster x human somatic hybrid cell line that retains only human chromosome 11 in a Chinese hamster genomic background. A total of 3,500 cosmids were isolated by colony hybridization with labeled human genomic DNA. DNA was prepared from 130 of these cosmid clones and examined for RFLP. In 62 of them, polymorphism was detected with one or more enzymes; four RFLPs were VNTR systems. All polymorphic clones were assigned to one of 22 intervals obtained by mapping on a deletion panel of 15 somatic hybrid cell lines containing parts of chromosome 11; 11 clones were finely mapped by in situ hybridization. Although RFLP markers were scattered on the whole chromosome, they were found predominantly in the regions of R-banding. These DNA markers will contribute to fine mapping of genes causing inherited disorders and tumor-suppressor genes that reside on chromosome 11. Furthermore, as one-third of the cosmid clones revealed a band or bands in Chinese hamster DNA, indicating sequence conservation, this subset of clones may be useful for isolating biologically important genes on chromosome 11.  相似文献   

4.
A detailed restriction map of the genome of Rhodobacter capsulatus SB1003 was constructed recently by using an ordered set of overlapping cosmids. Pulsed-field gel electrophoresis-generated restriction patterns of the chromosomes of 14 other R. capsulatus strains were compared. Two of them, St. Louis and 2.3.1, were chosen for high-resolution alignment of their genomes with that of SB1003. A 1-Mb segment of the R. capsulatus SB1003 cosmid set was used as a source of ordered probes to group cosmids from the other strains. Selected cosmids were linked into one 800-kb contig and two smaller contigs of 100 kb each. EcoRV and BamHI restriction maps of the newly ordered cosmids were constructed by using lambda terminase. Long-range gene order in the new strains was mainly conserved for the regions studied. However, one large genome rearrangement inverted a 470-kb DNA fragment of the St. Louis strain between the rrnA and rrnB operons. A 50-kb deletion covering three SB1003 probes was found in strain 2.3.1 near rrnB. Conservation of about 50% of the positions of restriction sites in all these strains and nearly 80% for the pair 2.3.1- St. Louis made it possible to produce high-resolution alignment of the contiguous 800-kb genome segment. Ten deletions of 2 to 27 kb, one 30-kb inversion, and three translocations were found in this region. Strong clustering of the positions of polymorphic restriction sites was observed. For a 50-kb size interval, two patterns of the distribution of restriction sites were found, one with about 90% and the other with 5 to 30% conservation of sites. This structure may be explained by independent acquisition of these divergent regions from other Rhodobacter strains.  相似文献   

5.
Thirty-three microsatellites have been mapped on the PiGMaP porcine genetic map. By comparison with the previously published PiGMaP maps, the maps of chromosome 2 (140 cM/70 cM) and chromosome 3 (180 cM/110 cM) were extended and new markers were mapped on the p-arm extremity of chromosome 7 and on the centromeric extremity of chromosome 15. New orders are proposed for markers on chromosomes 3 and 17. Six microsatellites isolated from cosmids were also localized on the cytogenetic map by fluorescent in situ hybridization. We tested the subcloning ligation mixture–polymerase chain reaction (SLiM-PCR) method for isolating microsatellites from cosmids. Subcloning is more effective when the cosmid harbours several microsatellites whereas SLiM-PCR is more straightforward when the cosmid contains a single microsatellite. Fifteen anonymous microsatellites were regionally assigned by using a hybrid cell panel. For map integration, the determination of a regional assignment of anonymous microsatellites by using a hybrid cell panel offers an alternative to microsatellite isolation from cosmids and their localizations by in situ hybridization.  相似文献   

6.
A physical map of the D. melanogaster genome is being constructed, in the form of overlapping cosmid clones that are assigned to specific polytene chromosome sites. A master library of ca. 20,000 cosmids is screened with probes that correspond to numbered chromosomal divisions (ca. 1% of the genome); these probes are prepared by microdissection and PCR-amplification of individual chromosomes. The 120 to 250 cosmids selected by each probe are fingerprinted by Hinfl digestion and gel electrophoresis, and overlaps are detected by computer analysis of the fingerprints, permitting us to assemble sets of contiguous clones (contigs). Selected cosmids, both from contigs and unattached, are then localized by in situ hybridization to polytene chromosomes. Crosshybridization analysis using end probes links some contigs, and hybridization to previously cloned genes relates the physical to the genetic map. This approach has been used to construct a physical map of the 3.8 megabase DNA in the three distal divisions of the x chromosome. The map is represented by 181 canonical cosmids, of which 108 clones in contigs and 32 unattached clones have been mapped individually by in situ hybridization to chromosomes. Our current database of in situ hybridization results also includes the beginning of a physical map for the rest of the genome: 162 cosmids have been assigned by in situ hybridization to 129 chromosomal subdivisions elsewhere in the genome, representing 5 to 6 megabases of additional mapped DNA.  相似文献   

7.
Chromosome IV is the smallest chromosome of Aspergillus nidulans. The centromere-proximal portion of the chromosome was mapped physically using overlapping clones of a cosmid genomic library. Two contiguous segments of a physical map, based on restriction mapping of cosmid clones, were generated, together covering more than 0.4 Mb DNA. A reverse genetic mapping approach was used to establish a correlation between physical and genetic maps; i.e., marker genes were integrated into physically mapped segments and subsequently mapped by mitotic and meiotic recombination. The resulting data, together with additional classical genetic mapping, lead to a substantial revision of the genetic map of the chromosome, including the position of the centromere. Comparison of physical and genetic maps indicates that meiotic recombination is low in subcentromeric DNA, its frequency being reduced from 1 crossover per 0.8 Mb to approximately 1 crossover per 5 Mb per meiosis. The portion of the chromosome containing the functional centromere was not mapped because repeat-rich regions hindered further chromosome walking. The size of the missing segment was estimated to be between 70 and 400 kb.  相似文献   

8.
The carcinoembryonic antigen (CEA)-like genes are members of a large gene family which is part of the immunoglobulin superfamily. The CEA family is divided into two major subgroups, the CEA-subgroup and the pregnancy-specific glycoprotein (PSG)-subgroup. In the course of an effort to develop a set of overlapping cosmids spanning human chromosome 19, we identified 245 cosmids in a human chromosome 19 cosmid library (6-7X redundant) by hybridization with an IgC-like domain fragment of the CEA gene. A fluorescence-based restriction enzyme digest fingerprinting strategy was used to assemble 212 probe-positive cosmids, along with 115 additional cosmids from a collection of approximately 8,000 randomly selected cosmids, into five contigs. Two of the contigs contain CEA-subgroup genes while the remaining three contigs contain PSG-subgroup genes. These five contigs range in size from 100 kb to over 300 kb and span an estimated 1 Mb. The CEA-like gene family was determined by fluorescence in situ hybridization to map in the q13.1-q13.2 region of human chromosome 19. Analysis of the two CEA-subgroup contigs provided verification of the contig assembly strategy and insight into the organization of 9 CEA-subgroup genes.  相似文献   

9.
A gene library of genomic DNA from the hydrogen uptake (Hup)-positive strain 128C53 of Rhizobium leguminosarum was constructed by using the broad-host-range mobilizable cosmid vector pLAFR1. The resulting recombinant cosmids contained insert DNA averaging 21 kilobase pairs (kb) in length. Two clones from the above gene library were identified by colony hybridization with DNA sequences from plasmid pHU1 containing hup genes of Bradyhizobium japonicum. The corresponding recombinant cosmids, pAL618 and pAL704, were isolated, and a region of about 28 kb containing the sequences homologous to B. japonicum hup-specific DNA was physically mapped. Further hybridization analysis with three fragments from pHU1 (5.9-kb HindIII, 2.9-kb EcoRI, and 5.0-kb EcoRI) showed that the overall arrangement of the R. leguminosarum hup-specific region closely parallels that of B. japonicum. The presence of functional hup genes within the isolated cosmid DNA was demonstrated by site-directed Tn5 mutagenesis of the 128C53 genome and analysis of the Hup phenotype of the Tn5 insertion strains in symbiosis with peas. Transposon Tn5 insertions at six different sites spanning 11 kb of pAL618 completely suppressed the hydrogenase activity of the pea bacteroids.  相似文献   

10.
We have constructed and characterized two related human chromosome 12-specific cosmid libraries. DNA from flow-sorted chromosomes from a somatic cell hybrid was cloned into a cosmid vector. Approximately 61% of the cosmids in the nearly 26,200 member arrayed libraries (LLt2NC01 and LLt2NC02) contain human DNA inserts, and 31% of the cosmids derived from human DNA contain CA repeats. One hundred and fifty-two cosmids isolated from the libraries have been mapped by fluorescence in situ hybridization (FISH). Cosmids containing human DNA inserts were localized by FISH exclusively to chromosome 12, confirming the chromosomal specificity of the libraries. The cosmids have been localized to all parts of this chromosome, although some regions are more highly represented than others. Partial sequence information was obtained from 44 mapped cosmids, and oligonucleotide primer pairs were synthesized that define unique sequence tagged sites (STSs). These mapped cosmids, and unique STSs derived from them, provide a set of useful clones and primer pairs for screening YAC libraries and developing contigs centered on regions of interest within chromosome 12. In addition, 120 of the mapped cosmids contain CA repeats, and thus they also provide a useful resource for defining highly polymorphic simple tandem repeat elements that serve as genetic markers for linkage analysis and disease gene localization.  相似文献   

11.
A combined physical and genetic map of Pseudomonas aeruginosa PAO   总被引:27,自引:0,他引:27  
A combined physical and genetic map of Pseudomonas aeruginosa PAO was constructed by pulsed-field gel electrophoresis and Southern hybridization using cosmid clones from a genomic library carrying known genes. A total of 37 SpeI restriction fragments have been mapped on the 5862 kb genome, and fragment contiguity demonstrated by hybridization with clones from a SpeI junction fragment library and fragments obtained by partial SpeI digestion, both derived from the P. aeruginosa PAO chromosome.  相似文献   

12.
Using human telomeric repeats and centromeric alpha repeats, we have identified adjacent single copy cosmid clones from human chromosome 22 cosmid libraries. These single copy cosmids were mapped to chromosome 22 by fluorescence in situ hybridisation (FISH). Based on these cosmids, we established contigs that included part of the telomeric and subtelomeric regions, and part of the centromeric and pericentromeric regions of the long arm of human chromosome 22. Each of the two cosmid contigs consisted of five consecutive steps and spanned approximately 100–150 kb at both extreme ends of 22q. Moreover, highly informative polymorphic markers were identified in the telomeric region. Our results suggest that the telomere specific repeat (TTAGGG) n encompasses a region that is larger than 40 kb. The cosmid contigs and restriction fragment length polymorphism markers described here are useful tools for physical and genetic mapping of chromosome 22, and constitute the basis of further studies of the structure of the subtelomeric and pericentromeric regions of 22q. We also demonstrate the use of these clones in clinical diagnosis of different chromosome 22 aberrations by FISH.  相似文献   

13.
Kilian  A.  Chen  J.  Han  F.  Steffenson  B.  Kleinhofs  A. 《Plant molecular biology》1997,35(1-2):187-195
The barley stem rust resistance genes Rpg1 and rpg4 were mapped in barley on chromosomes 1P and 7M, respectively and the syntenous rice chromosomes identified as 6P and 3P by mapping common probes in barley and rice. Rice yeast artificial chromosome (YAC), bacterial artificial chromosome (BAC) and cosmid clones were used to isolate probes mapping to the barley Rpg1 region. The rice BAC isolated with the pM13 probe was a particularly excellent source of probes. A high-resolution map of the Rpg1 region was established with 1400 gametes yielding a map density of 3.6 markers per 0.1 cM. A detailed physical map was established for the rice BAC fragment containing the Rpg1-flanking markers pM13 and B24. This fragment covers a barley genetic distance of 0.6 cM and a rice DNA physical distance of ca. 70 kb. The distribution of barley cross-overs in relation to the rice DNA physical distances was extremely uneven. The barley genetic distance between the pM13 marker and Rpg1 was 0.1 cM per ca. 55 kb, while on the proximal side it was 0.5 cm per ca. 15 kb. Three probes from the distal end of the pM13 BAC mapped 3.0 cm proximal of Rpg1 and out of synteny with rice. These experiments confirm the validity of using large insert rice clones as probe sources to saturate small barley (and other large genome cereals) genome regions with markers. They also establish a note of caution that even in regions of high microsynteny, there may be small DNA fragments that have transposed and are no longer in syntenous positions.  相似文献   

14.
Molecular probes that contain DNA flanking CpG-rich restriction sites are extremely valuable in the construction of physical maps of chromosomes and in the identification of genes associated with hypomethylated HTF (HpaII tiny fragment) islands. We describe a new approach to the isolation and characterization of linking clones in arrayed chromosome-specific cosmid libraries through the large-scale semiautomated restriction mapping of cosmid clones. We utilized a cosmid library representing human chromosome 11q12-11qter and carried out automated restriction enzyme analysis, followed by regional localization to chromosome 11q using high-resolution in situ suppression hybridization. Using this approach, 165 cosmid linking clones containing one or more NotI, BssHII, SfiI, or SacII sites were identified among 960 chromosome-specific cosmids. Furthermore, this analysis allowed clones containing a single site to be distinguished from those containing clusters of two or more rare sites. This analysis demonstrated that more than 75% of cosmids containing a rare restriction site also contained a second rare restriction site, suggesting a high degree of CpG-rich restriction site clustering. Thirty chromosome 11q-specific cosmids containing rare CpG-rich restriction sites were regionally localized by high-resolution fluorescence in situ suppression hybridization, demonstrating that all of the CpG-rich sites detected by this method were located in bands 11q13 and 11q23. In addition, the distribution of (CA)n repetitive sequences was determined by hybridization of the arrayed cosmid library with oligonucleotide probes, confirming a random distribution of microsatellites among CpG-rich cosmid clones. This set of reagent cosmid clones will be useful for physical linking of large restriction fragments detected by pulsed-field gel electrophoresis and will provide a new and highly efficient approach to the construction of a physical map of human chromosome 11q.  相似文献   

15.
An initial mapping analysis of growth and reproduction complex (grc) and grc+ genomic DNA identified several restriction fragment length polymorphisms specific for the grc region of the MHC. To analyze further the genomic organization and structure of the grc, a cosmid library was constructed from a grc+-bearing strain (R21). One cosmid cluster, encompassing 41.4 kb of DNA, contained four, or possibly five, class I genes that mapped to the RT1.E-grc region Two unique non-class I fragments were isolated from certain cosmids within this cluster. These fragments were hybridized to genomic DNA derived from five rat strains (BIL/2, R18, R21, R22, and BIL/1), and the results showed that grc-bearing rats have a deletion of at least 3.1 kb of DNA in the region immediately adjacent to the MHC. The loss of the genes in this region is probably the cause of the growth and reproductive defects in these animals and probably also of their increased susceptibility to chemical carcinogens.  相似文献   

16.
We have sequenced the Rhodobacter capsulatus nifH and nifD genes. The nifH gene, which codes for the dinitrogenase reductase protein, is 894 bp long and codes for a polypeptide of predicted Mr 32,412. The nifD gene, which codes for the alpha subunit of dinitrogenase, is 1,500 bp long and codes for a protein of predicted Mr 56,113. A 776-bp BglII-XhoI fragment containing only nif sequences was used as a hybridization probe against R. capsulatus genomic DNA. Two HindIII fragments, 11.8 kb and 4.7 kb in length, hybridize to this probe. Both fragments have been cloned from a cosmid library. The 11.8-kb fragment contains the nifH, D and K genes, as previously demonstrated (Scolnik and Haselkorn, 1984). In this paper we present evidence that suggests that the 4.7-kb HindIII fragment contains a gene coding for 16S rRNA, and that although homology between nif and this fragment can be observed in filter hybridization experiments, a second copy of the nif structural genes seems not to be present in this region.  相似文献   

17.
We present an approach to the construction of an overlapping restriction fragment map of a single human chromosome. A genomic cosmid library genome was constructed from a mouse-human hybrid cell line containing chromosome 17 as its only human genetic component. Cosmids containing human inserts were isolated by hybridisation to a human Alu sequence. DNAs from ninety-six randomly chosen cosmids were digested with either EcoRI or HindIII, end-labelled with 35S-dATP and analysed using agarose gel electrophoresis. Comparison of the restriction fragment patterns revealed two pairs of overlapping clones, that were confirmed by cross-hybridization of the overlapping fragments. The two pairs of cosmids both mapped to human chromosome 17, as shown by hybridization to a panel of somatic cell hybrids. These data demonstrate that the generation of an overlapping cosmid map along a human chromosome is feasible, representing an intermediate step towards the complete sequencing of a human chromosome.  相似文献   

18.
Y S Fan  R Sasi  C Lee  D Court  C C Lin 《Genomics》1992,14(2):542-545
Fifty cosmids have been mapped to metaphase chromosomes by fluorescence in situ hybridization under conditions that suppress signals from repetitive DNA sequences. The cosmid clones were isolated from a flow-sorted human X chromosome library. Thirty-eight of the clones were localized to chromosome X and 12 to autosomes such as chromosomes 3, 7, 8, 14, and 17. Although most of the cosmids mapped to the X chromosome appeared to be scattered along both the short and long arms, 10 cosmids were localized to the centromeric region of the chromosome. Southern blot analysis revealed that only two of these clones hybridized to probe pXBR-1, which detects the DXZ1 locus. In addition, 4 out of 5 cosmids mapped on chromosome 8 also localized on the centromeric region. While localization of X-specific cosmids will facilitate the physical mapping of the human X chromosome, cosmids mapped to the centromeric regions of chromosomes X and 8 should be especially useful for studying the structure and organization of these regions.  相似文献   

19.
T. Ebersole  F. Lai    K. Artzt 《Genetics》1992,131(1):175-182
Many mutations affecting mouse development have been mapped to the t-complex of mouse chromosome 17. We have obtained 17 cosmid clones as molecular markers for this region by screening a hamster-mouse chromosome 17 and 18 cell hybrid cosmid library with mouse-specific repetitive elements and mapping positive clones via t-haplotype vs. C3H restriction fragment length polymorphism (RFLP) analysis. Twelve of the clones mapping distal to Leh66B in t-haplotypes are described here. Using standard RFLP analysis or simple sequence length polymorphism between t-haplotypes, exceptional partial t-haplotypes and nested sets of inter-t-haplotype recombinants, five cosmids have been mapped in or around In(17)3 and seven in the most distal inversion In17(4). More precise mapping of four of the cosmids from In(17)4 shows that they will be useful in the molecular identification of some of the recessive lethals mapped to the t-complex: two cosmids map between H-2K and Crya-1, setting a distal limit in t-haplotypes for the position of the tw5 lethal, one is inseparable from the tw12 lethal, and one maps distal to tf near the t0(t6) lethal and cld.  相似文献   

20.
A total of 5700 human chromosome 3-specific cosmid clones was isolated from a series of cosmid libraries constructed from somatic cell hybrids whose only human component was an entire chromosome 3 or a chromosome 3 containing an interstitial deletion removing 50% of long arm sequences. Several unique sequence chromosome 3-specific hybridization probes were isolated from each of 616 of these cosmids. These probes were then used to localize the cosmids by hybridization to a somatic cell hybrid deletion mapping panel capable of resolving chromosome 3 into nine distinct subregions. All 616 of the cosmids were localized to either the long or short arm of chromosome 3 and 63% of the short arm cosmids were more precisely localized. We have identified a total of 87 cosmids that contain fragments that are evolutionarily conserved. Fragments from these cosmids should prove useful in the identification of new chromosome 3-specific genes as well as in comparative mapping studies. The localized cosmids should provide excellent saturation of human chromosome 3 and facilitate the construction of physical and genetic linkage maps to identify various disease loci including Von Hippel Lindau disease and renal and small cell lung carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号