首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Platelet-derived growth factor (PDGF) is generally considered to stimulate phosphoinositide turnover resulting in activation of protein kinase C and increased cytoplasmic [Ca2+]. We have examined the role of these secondary effects in regulation of c-myc mRNA accumulation in the MG-63 human osteogenic sarcoma line. Treatment of quiescent cells with 12-O-tetradecanoyl phorbol-13-acetate (TPA) to down-regulate protein kinase C inhibited TPA-stimulated c-myc expression but did not affect the PDGF-modulated process. When cytoplasmic [Ca2+] was increased by addition of a Ca2+ ionophore (A23187 or ionomycin), no stimulation of c-myc RNA was seen; furthermore, these agents did not enhance the PDGF-modulated c-myc expression. Addition of EGTA to cultures treated with both PDGF and a Ca2+ ionophore did not inhibit c-myc induction but rather caused a superinduction of c-myc RNA accumulation. Superinduction occurred only if the [EGTA] was greater than [Ca2+] in the medium. This superinduction was distinct from the increased induction caused by inhibition of protein synthesis. Because PDGF-induced c-myc expression is independent of protein kinase C and increased cytoplasmic [Ca2+], the evidence suggests that PDGF modulates c-myc RNA accumulation in MG-63 cells via a novel pathway, seemingly uncoupled from the classic action of increased phosphoinositide metabolism.  相似文献   

2.
We have used phorbol esters, such as 12-O-tetradecanoyl phorbol 13-acetate (TPA), to study the actions of protein kinase C (a TPA receptor) on cytosolic free Ca2+ concentrations [( Ca2+]i) and hormone secretion in rat pituitary cells (GH cells), and to elucidate the role of diacylglycerol (a protein kinase C activator) in thyrotropin-releasing hormone (TRH) action. TPA had a dual action on [Ca2+]i, inducing a stimulatory phase from 300 (basal) to 420 nM, which was interrupted in 30-60 s by an inhibitory phase which transiently lowered [Ca2+]i to 240 nM and rose in 3-10 min to yield the stimulatory phase. TPA-mediated changes in [Ca2+]i were induced by other phorbol esters and mezerein but not by phorbol or activators of kinases different from protein kinase C. Both phases of TPA action on [Ca2+]i were abolished by 5-min pretreatment with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (1.33 mM) or Ca2+ channel antagonists (verapamil or nifedipine). TPA also enhanced the rate of sustained hormone secretion without inducing a burst of hormone release (unlike TRH). Also, stimulation of secretion by TPA was not inhibited by Ca2+ channel antagonists and was resistant (10%) to EGTA. Simultaneous addition of TPA with the ionophore ionomycin (100 nM) reconstituted a TRH-like spike, nadir and plateau of [Ca2+]i. Ionomycin generated the spike in [Ca2+]i by releasing TRH-sensitive Ca2+ stores, while TPA induced the nadir (inhibitory phase), and a nifedipine/verapamil-sensitive plateau of [Ca2+]i (stimulatory phase). Concurrent (but not separate) addition of ionomycin and TPA also reconstituted a TRH-like burst of hormone secretion. These and previous results indicate that activation of protein kinase C by TPA or diacylglycerol (which is elevated by TRH) and a simultaneous spike in [Ca2+]i are required for burst secretion. Diacylglycerol may also mediate the TRH-induced nadir and plateau of [Ca2+]i; the latter process contributes to Ca2+-dependent stimulation of steady secretion by TRH.  相似文献   

3.
The cytoplasmic concentration of ionized Ca2+ [( Ca2+]i) was determined in 3T3-L1 cells during their differentiation from fibroblasts to adipocytes, suspended and loaded with the fluorescent Ca2+ indicators quin2 or indo-1. In undifferentiated fibroblasts, as well as in differentiated adipocytes up to day 9, [Ca2+]i was steady around 170 nM, and it increased significantly only in old adipocytes (day 12). During differentiation, stimulation of glucose uptake by insulin increased from a few percent to severalfold. Stimulation of uptake was already apparent after 10 min of addition of the hormone, and 10 nM insulin produced maximal stimulation in 30 min. Insulin (10(-6) M) added to quin2- or indo-1-loaded, suspended adipocytes had no detectable effect on [Ca2+]i for at least 10 min. In contrast, addition of the general anesthetic halothane increased [Ca2+]i from 172 to 251 nM in 3 min. In EGTA solution, the Ca2+ ionophore ionomycin elicited release of Ca2+ from intracellular stores that resulted in a transient increase in [Ca2+]i. A smaller but measurable Ca2+ release from intracellular stores (increasing [Ca2+]i by 20 nM) resulted upon addition of 20 micrograms/ml phosphatidic acid. In contrast, insulin did not produce any detectable release of Ca2+ from intracellular stores. Incubation of 3T3-L1 adipocytes with insulin in the presence of EGTA (the latter in excess over the Ca2+ concentration of the medium) did not prevent the stimulation of hexose uptake by the hormone, indicating that extracellular Ca2+ does not play a role in the insulin response. Furthermore, incubation of cells with quin2/AM in EGTA medium during exposure to insulin did not prevent stimulation of hexose uptake. Under these conditions it is demonstrated that intracellular quin2 suffices to chelate cytoplasmic Ca2+ even if releasable Ca2+ from intracellular stores were to pour into the cytoplasm. Thus, quin2 effectively lowers [Ca2+]i without impairing insulin action. It is concluded that insulin does not produce changes in [Ca2+]i and that chelating intracellular Ca2+ does not prevent stimulation of hexose uptake by insulin. These results suggest that it is unlikely that changes in [Ca2+]i may play a role in the transduction of information in insulin stimulation of glucose uptake in 3T3-L1 adipocytes.  相似文献   

4.
The effect of the antidepressant paroxetine on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unclear. This study explored whether paroxetine changed basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent dye. Paroxetine at concentrations between 100-1,000 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 50% by removing extracellular Ca2+. Paroxetine-induced Ca2+ influx was inhibited by the store-operated Ca2+ channel blockers nifedipine, econazole and SK&F96365, and protein kinase C modulators. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished paroxetine-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not alter paroxetine-induced [Ca2+]i rise. Paroxetine at 10-50 microM induced cell death in a concentration-dependent manner. The death was not reversed when cytosolic Ca2+ was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Propidium iodide staining suggests that apoptosis plays a role in the death. Collectively, in OC2 cells, paroxetine induced [Ca2+]i rise by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via store-operated Ca2+ channels in a manner regulated by protein kinase C and phospholipase A2. Paroxetine (up to 50 microM) induced cell death in a Ca2+-independent manner.  相似文献   

5.
H Xu  MC Heath 《The Plant cell》1998,10(4):585-598
The hypersensitive response (HR) of disease-resistant plant cells to fungal invasion is a rapid cell death that has some features in common with programmed cell death (apoptosis) in animals. We investigated the role of cytosolic free calcium ([Ca2+]i) in the HR of cowpea to the cowpea rust fungus. By using confocal laser scanning microscopy in conjunction with a calcium reporter dye, we found a slow, prolonged elevation of [Ca2+]i in epidermal cells of resistant but not susceptible plants as the fungus grew through the cell wall. [Ca2+]i levels declined to normal levels as the fungus entered and grew within the cell lumen. This elevation was related to the stage of fungal growth and not to the speed of initiation of subsequent cell death. Elevated [Ca2+]i levels also represent the first sign of the HR detectable in this cowpea-cowpea rust fungus system. The increase in [Ca2+]i was prevented by calcium channnel inhibitors. This effect was consistent with pharmacological tests in which these inhibitors delayed the HR. The data suggest that elevation of [Ca2+]i is involved in signal transduction leading to the HR during rust fungal infection.  相似文献   

6.
Vasopressin caused a 40% inhibition of 45Ca uptake after the addition of 0.1 mM-45Ca2+ to Ca2+-deprived hepatocytes. At 1.3 mM-45Ca2+, vasopressin and ionophore A23187 each caused a 10% inhibition of 45Ca2+ uptake, whereas La3+ increased the rate of 45Ca2+ uptake by Ca2+-deprived cells. Under steady-state conditions at 1.3 mM extracellular Ca2+ (Ca2+o), vasopressin and La3+ each increased the rate of 45Ca2+ exchange. The concentrations of vasopressin that gave half-maximal stimulation of 45Ca2+ exchange and glycogen phosphorylase activity were similar. At 0.1 mM-Ca2+o, La3+ increased, but vasopressin did not alter, the rate of 45Ca2+ exchange. The results of experiments performed with EGTA or A23187 or by subcellular fractionation indicate that the Ca2+ taken up by hepatocytes in the presence of La3+ is located within the cell. The addition of 1.3 mM-Ca2+o to Ca2+-deprived cells caused increases of approx. 50% in the concentration of free Ca2+ in the cytoplasm [( Ca2+]i) and in glycogen phosphorylase activity. Much larger increases in these parameters were observed in the presence of vasopressin or ionophore A23187. In contrast with vasopressin, La3+ did not cause a detectable increase in glycogen phosphorylase activity or in [Ca2+]i. It is concluded that an increase in plasma membrane Ca2+ inflow does not by itself increase [Ca2+]i, and hence that the ability of vasopressin to maintain increased [Ca2+]i over a period of time is dependent on inhibition of the intracellular removal of Ca2+.  相似文献   

7.
The rate of Ca2+ extrusion across the plasma membrane of rat parotid acinar cells was determined by measuring the decay of the intracellular calcium concentration, [Ca2+]i, following the addition of EGTA to agonist stimulated cells. In the presence of extracellular Ca2+, the muscarinic cholinergic receptor agonist, methacholine, rapidly increased [Ca2+]i (peaking within 5 s), which then decreased to a higher steady state level. This elevated steady state level was dependent on extracellular Ca2+ concentration. Likewise, thapsigargin, a non-phorbol ester tumor promoter that does not increase inositol phosphates, gradually increased [Ca2+]i, peaking within 1 min and then declining to a new elevated plateau level which was also dependent on extracellular Ca2+. [Ca2+]i, elevated by methacholine or thapsigargin, was rapidly decreased by the addition of EGTA by a process the kinetics of which depended on the value of [Ca2+]i before the addition of EGTA. That is, [Ca2+]i increased as a function of the extracellular Ca2+ concentration and also the apparent half-time for Ca2+ extrusion following the addition of EGTA to cells was increased as the [Ca2+]i increased. This presumably reflects the saturable nature of the Ca2+ extrusion mechanism. The steady state [Ca2+]i in cells stimulated with methacholine or thapsigargin in nominally Ca2+ free medium was similar to the steady state [Ca2+]i in unstimulated cells in normal, Ca2(+)-containing medium. Under these similar [Ca2+]i conditions, stimulated and unstimulated cells showed a similar time course of decay upon addition of EGTA. In addition, neither methacholine nor phorbol myristate acetate decreased the sustained elevation of [Ca2+]i induced by ionomycin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Beauvericin, a cyclic hexadepsipeptide, is a mycotoxin that can induce cell death in human lymphoblastic leukemia CCRF-CEM cells. Our previous data have shown that beauvericin induces cell death in CCRF-CEM cells in a dose- and time-dependent manner, and that this beauvericin-induced cell death can be prevented by administration of intracellular calcium chelator-BAPTA. Therefore, the intracellular Ca2+ concentration ([Ca2+]i) may play an important role in beauvericin-induced cell death in CCRF-CEM cells. In this study, the effect of beauvericin on [Ca2+]i and the possible mechanism responsible for the changes of [Ca2+]i in CCRF-CEM cells were investigated. Beauvericin caused a rapid and sustained [Ca2+]i rise in a dose-dependent manner. Excess extracellular Ca2+ facilitated beauvericin-induced [Ca2+]i rise by adding 1 mM CaCl2 in the bathing medium. On the other hand, beauvericin-induced [Ca2+]i rise was prevented in Ca2+-free Tyrode's solution by 200 microM EGTA. In addition, beauvericin-induced [Ca2+]i rise was also attenuated by intracellular Ca2+ chelator-BAPTA/AM. It is worthy to note that neither the voltage-dependent Ca2+ channel blocker, nimodipine, nor depletion of intracellular Ca2+ with thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor, has any effect on beauvericin-induced [Ca2+]i rise. The data from present study indicate that beauvericin acts as a potent Ca2+ mobilizer by stimulating extracellular Ca2+ influx CCRF-CEM cells.  相似文献   

9.
H Sugiya  S Furuyama 《FEBS letters》1991,286(1-2):113-116
In fura-2-loaded parotid acinar cells, 50-200 microM sphingosine induced an increase in cytosolic Ca2+ ([Ca2+]i). When extracellular Ca2+ was chelated by EGTA, 50 microM sphingosine failed to increase [Ca2+]i, but 100 or 200 microM sphingosine induced a slight and transient increase in [Ca2+]i. The addition of LaCl3 to the medium resulted in the same effect as chelation of extracellular Ca2+. When cells were incubated in low Ca2+ medium containing sphingosine, and extracellular Ca2+ was subsequently added, a rapid increase in [Ca2+]i depending on the concentration of sphingosine was shown. In low Ca2+ medium, a slight increase in [Ca2+]i induced by high concentrations of sphingosine was not shown after the transient increase in [Ca2+]i elicited by methacholine. Inhibitors of protein kinase C, H-7 and K252a, did not mimic the effect of sphingosine on [Ca2+]i. These results suggest that sphingosine stimulates Ca(2+)-influx and further stimulates the release of Ca2+ from agonist-sensitive intracellular pools by a mechanism that is independent of protein kinase C.  相似文献   

10.
In the presence of 1 mM EGTA, the addition of the calcium ionophore ionomycin to human platelets loaded with 30 microM fura-2 could elevate [Ca2+]i from less than 100 nM to a maximum of greater than 3 microM, presumably by discharge of Ca2+ from internal stores. Under the same conditions thrombin could maximally increase [Ca2+]i to a peak of greater than 1 microM which then declined to near resting levels within 3-4 minutes; by contrast in platelets loaded with 1 mM quin2 thrombin could raise [Ca2+]i to only about 200 nM. In the presence of 1 mM Ca2+ the peak response to thrombin in fura-2-loaded platelets was higher (1.4 microM) than that observed in the presence of EGTA (1.1 microM) and the elevation in [Ca2+] was prolonged, presumably by Ca2+ influx. These results with fura-2-loaded platelets indicate that mobilisation of internal Ca2+ can contribute a substantial proportion of the early peak [Ca2+]i evoked by thrombin directly confirming the deductions from previous work with different loadings of quin2. Under natural conditions the major role of Ca2+ influx may be to prolong the [Ca2+]i rise rather than to make it larger.  相似文献   

11.
The lipid mediator platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, AGEPC) has been shown to elicit several important biochemical signaling responses in mammalian cells, including polyphosphoinositide hydrolysis, arachidonic acid release/eicosanoid production, and protein tyrosine phosphorylation. In the present study, the roles of Ca2+ and protein kinase C (PKC), two signaling components of the phospholipase C pathway, in AGEPC-stimulated eicosanoid production and protein tyrosine phosphorylation, were investigated in cultured rat Kupffer cells. AGEPC at nanomolar concentrations induced an increase in intracellular calcium concentration ([Ca2+]i), stimulated membrane PKC activity, and resulted in protein tyrosine phosphorylation. The maximal increase in [Ca2+]i and membrane PKC activity in response to AGEPC were observed within 30-50 s, whereas the AGEPC-induced protein tyrosine phosphorylation reached maximal levels within 2-5 min. [Ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) but not 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8), an inhibitor of calcium release from intracellular compartments, nearly abolished the AGEPC-induced increase in [Ca2+]i suggesting involvement of extracellular calcium influx in this event. Both EGTA and TMB-8 abolished or inhibited AGEPC-stimulated protein tyrosine phosphorylation and eicosanoid formation, respectively. The calcium ionophore A23187 alone stimulated eicosanoid production and protein tyrosine phosphorylation with an identical pattern to that of AGEPC. Phorbol myristate acetate (PMA), an activator of PKC, which did not affect [Ca2+]i, mimicked the actions of AGEPC, stimulating eicosanoid production and promoting tyrosine phosphorylation of a set of proteins similar to those phosphorylated following AGEPC stimulation. AGEPC-enhanced tyrosine phosphorylation of some of the protein substrates and eicosanoid production were inhibited in cells "down-regulated" for PKC. Furthermore, both PMA- and AGEPC-stimulated eicosanoid production and protein tyrosine phosphorylation were attenuated or abolished by at least one of the PKC inhibitors, staurosporine, and calphostin C. Taken together, these results are consistent with the conclusions that: (a) AGEPC stimulates the phospholipase-mediated arachidonic acid release/eicosanoid synthesis cascade and protein tyrosine phosphorylation through extracellular Ca(2+)-dependent and PKC-dependent and -independent mechanism(s) and (b) the Ca(2+)-PKC interaction determines the efficacy of the AGEPC-stimulated cellular events.  相似文献   

12.
We have investigated cellular Ca2+ regulation during A2058 human melanoma cell chemotaxis to type IV collagen (CIV). We have identified alpha2beta1-integrin as the primary mediator of A2058 cell response to CIV in vitro. Integrin ligation initiated a characteristic intracellular Ca2+ concentration ([Ca2+]i) response consisting of an internal release and a receptor-mediated Ca2+ entry. Thapsigargin (TG) pretreatment drained overlapping and CIV-inducible internal Ca2+ stores while initiating a store-operated Ca2+ release (SOCR). CIV-mediated Ca2+ entry was additive to TG-SOCR, suggesting an independent signaling mechanism. Similarly, ionophore application in a basal medium containing Ca2+ initiated a sustained influx. Elevated [Ca2+]i from TG-SOCR or ionophore significantly attenuated cell migration to CIV by recruiting the Ca2+/calcineurin-mediated signaling pathway. Furthermore, low [Ca2+]i induced by EGTA application in the presence of ionophore fully restored cell motility to CIV. Together, these results suggest that [Ca2+]i signaling accompanying A2058 cell response to alpha2beta1-integrin ligation is neither necessary nor sufficient and that elevated [Ca2+]i downregulates cell motility via a calcineurin-mediated mechanism in A2058 cell chemotaxis to CIV.  相似文献   

13.
The Na/K pump plays a key role in the regulation of the intracellular concentrations of monovalent cations and related cell function leading to electrogenesis and excitation-contraction coupling. We focus this review on the analysis of recent data showing that (i) inhibition of the Na/K pump triggers a signaling cascade independently of modulation of the intracellular [Na+]i/[K+]i ratio; (ii) elevation of [Na+]i under sustained inhibition of the Na/K pump leads to expression of a set of genes by [Ca2+]i-dependent and independent pathways; (iii) [Na+]i-sensitive genes are involved in the inhibition of programmed cell death (apoptosis) in vascular smooth muscle cells.  相似文献   

14.
Xu B  Chen S  Luo Y  Chen Z  Liu L  Zhou H  Chen W  Shen T  Han X  Chen L  Huang S 《PloS one》2011,6(4):e19052
Cadmium (Cd), a toxic environmental contaminant, induces oxidative stress, leading to neurodegenerative disorders. Recently we have demonstrated that Cd induces neuronal apoptosis in part by activation of the mitogen-activated protein kineses (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains elusive. Here we show that Cd elevated intracellular calcium ion ([Ca2+](i)) level in PC12, SH-SY5Y cells and primary murine neurons. BAPTA/AM, an intracellular Ca2+ chelator, abolished Cd-induced [Ca2+](i) elevation, and blocked Cd activation of MAKPs including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38, and mTOR-mediated signaling pathways, as well as cell death. Pretreatment with the extracellular Ca2+ chelator EGTA also prevented Cd-induced [Ca2+](i) elevation, MAPK/mTOR activation, as well as cell death, suggesting that Cd-induced extracellular Ca2+ influx plays a critical role in contributing to neuronal apoptosis. In addition, calmodulin (CaM) antagonist trifluoperazine (TFP) or silencing CaM attenuated the effects of Cd on MAPK/mTOR activation and cell death. Furthermore, Cd-induced [Ca2+](i) elevation or CaM activation resulted in induction of reactive oxygen species (ROS). Pretreatment with BAPTA/AM, EGTA or TFP attenuated Cd-induced ROS and cleavage of caspase-3 in the neuronal cells. Our findings indicate that Cd elevates [Ca2+](i), which induces ROS and activates MAPK and mTOR pathways, leading to neuronal apoptosis. The results suggest that regulation of Cd-disrupted [Ca2+](i) homeostasis may be a new strategy for prevention of Cd-induced neurodegenerative diseases.  相似文献   

15.
Rat glomerular mesangial cell monolayers loaded with the fluorescent probe fura-2 responded to exogenous platelet-activating factor (PAF) with a rapid increase in cytosolic free calcium concentration ([Ca2+]i). PAF-induced [CA2+]i transients consisted of a dose-dependent phasic peak response followed by a sustained tonic phase of increased [Ca2+]i. Chelation of extracellular calcium with EGTA suppressed the tonic phase of increased [Ca2+]i but did not affect the phasic peak response. This suggests two mechanisms for the elevation of [Ca2+]i: a transient mobilization from intracellular stores and an enhanced calcium influx across the plasma membrane, possibly mediated by receptor-operated channels. Lyso-PAF had no effect on basal [Ca2+]i and the PAF-receptor antagonist L652,731 selectively inhibited responses to PAF. PAF-stimulated mesangial cells displayed homologous desensitization to reexposure to PAF while still being responsive to other calcium-mobilizing agonists. Preincubation of cells with the protein kinase C (PKC) activator phorbol myristate acetate diminished the PAF-induced [Ca2+]i transient, suggesting a regulatory role for PKC in PAF-activation of mesangial cells. An increase in [Ca2+]i, as a result of receptor-linked activation of phospholipase C, may mediate PAF-induced hemodynamic and inflammatory events in renal glomeruli.  相似文献   

16.
Assembly of microfilaments involves the conversion of actin from the monomeric (G) to the filamentous (F) form. The exact sequence of events responsible for this conversion is yet to be defined and, in particular, the role of calcium remains unclear. Intact and electropermeabilized human neutrophils were used to assess more directly the role of cytosolic calcium [( Ca2+]i) in actin assembly. Staining with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin and right angle light scattering were used to monitor the formation of F-actin. Though addition of Ca2+ ionophores can be known to induce actin assembly, the following observations suggest that an increased [Ca2+]i is not directly responsible for receptor-induced actin polymerization: (a) intact cells in Ca2(+)-free medium, depleted of internal Ca2+ by addition of ionophore, responded to the formyl peptide fMLP with actin assembly despite the absence of changes in [Ca2+]i, assessed with Indo-1; (b) fMLP induced a significant increase in F-actin content in permeabilized cells equilibrated with medium containing 0.1 microM free Ca2+, buffered with up to 10 mM EGTA; (c) increasing [Ca2+]i beyond the resting level by direct addition of CaCl2 to permeabilized cells resulted in actin disassembly. Conversely, lowering [Ca2+]i resulted in spontaneous actin assembly. To reconcile these findings with the actin-polymerizing effects of Ca2+ ionophores, we investigated whether A23187 and ionomycin induced actin assembly by a mechanism independent of, or secondary to the increase in [Ca2+]i. We found that the ionophore-induced actin assembly was completely inhibited by the leukotriene B4 (LTB4) antagonist LY-223982, implying that the ionophore effect was secondary to LTB4 formation, possibly by stimulation of phospholipase A2. We conclude that actin assembly is not mediated by an increase in [Ca2+]i, but rather that elevated [Ca2+]i facilitates actin disassembly, an effect possibly mediated by Ca2(+)-sensitive actin filament-severing proteins such as gelsolin. Sequential actin assembly and disassembly may be necessary for functions such as chemotaxis.  相似文献   

17.
There is considerable evidence, reviewed by Brostrom and Brostrom [1], that Ca2+ stores are involved in the regulation of protein synthesis. We provide evidence in HeLa cells that is consistent with their findings that depletion of Ca2+ stores and not changes in cytosolic free Ca2+ ([Ca2+]i) inhibit protein synthesis, but we also show that the mechanism leading to depletion is critical. Specifically, depletion of stores by the Ca(2+)-mobilizing hormone histamine does not inhibit protein synthesis. In assessing the role of Ca2+ stores in protein synthesis, experiments in certain cell types have been complicated by the use of Ca2+ ionophores, which simultaneously elevate [Ca2+]i and deplete Ca2+ stores. We have measured total cell Ca2+, [Ca2+]i and protein synthesis in HeLa cells under conditions that allowed evaluation of the separate contributions of stores and [Ca2+]i. Using 1,2-bis(2-aminophenoxyethane)-N,N,N'N'-tetraacetic acid (BAPTA) as an intracellular Ca2+, chelator and thapsigargin, which inhibits the membrane Ca(2+)-ATPase of storage vesicles, total cell Ca2+ can be depleted and this depletion is enhanced by extracellular EGTA which blocks Ca2+ influx; [Ca2+]i is actually lowered by BAPTA under these conditions. Protein synthesis is inhibited by BAPTA in the presence of EGTA and by thapsigargin with or without EGTA. However, histamine which with EGTA, affects an equal degree of Ca2+ depletion does not inhibit protein synthesis. Thus, it is suggested that Ca2+ stores are not homogeneous, and that the hormone-sensitive store specifically does not play a role in the regulation of protein synthesis. In this respect, the hormone-sensitive and insensitive stores do not functionally communicate and may be separately regulated.  相似文献   

18.
In the present study we have investigated the effect of changes in the concentration of cytosolic free Ca2+ ([Ca2+]i) on the deacetylation-reacylation of PAF-acether (alkylacetylglycerophosphocholine, alkylacetyl-GPC) by rabbit platelets. Washed platelets were incubated with alkyl[3H]acetyl-GPC ([3H]acetyl-PAF) or [3H]alkylacetyl-GPC ([3H]alkyl-PAF) and [Ca2+]i was subsequently elevated by the addition of the ionophore A23187 or thrombin. The catabolism of PAF-acether was studied by measuring the release of [3H]acetate or the formation of [3H]alkylacyl-GPC. The ionophore inhibited the release of [3H]acetate and the formation of [3H]alkylacyl-GPC with no accumulation of lyso-[3H]PAF, indicating that the deacetylation of PAF-acether was blocked. The effect of ionophore on the deacetylation of PAF-acether was parallel with the increase of [Ca2+]i and could be reversed by the addition of EGTA. In contrast with the prolonged inhibition evoked by ionophore, thrombin, which induced a transient elevation of [Ca2+]i, merely delayed the deacetylation of PAF-acether. Since intact platelets failed to convert exogenous lyso-PAF, the effect of Ca2+ on its acylation was investigated by using platelet homogenates. These experiments showed that the acylation of lyso-PAF was inhibited by the exogenously added Ca2+, with a maximum effect at 1 mM. When the formation of endogenous lyso-PAF from the labelled pool of alkylacyl-GPC was examined, a prolonged increase in the concentration of lyso-PAF with a parallel and equally prolonged decrease in the cellular level of alkylacyl-GPC were observed after the addition of ionophore to intact platelets. The addition of EGTA reversed the effect of ionophore, thus permitting reacylation of lyso-PAF. In contrast, only a transient change in the level of lyso-PAF and alkylacyl-GPC was evoked by the addition of thrombin. Therefore we conclude that the inhibitory effect of Ca2+ on the deacetylation-reacylation of PAF-acether may have an important role in the regulation of its biosynthesis.  相似文献   

19.
An essential function of C-cells is to monitor extracellular Ca2+ concentration ([Ca2+]e) and to respond to changes in [Ca2+]e by regulating hormone secretion. Using the calcitonin-secreting rat C-cell line rMTC 44-2, we have investigated a possible tight linkage between [Ca2+]e and cytosolic free Ca2+ ([Ca/+]i). We have demonstrated, using the Ca2+ indicator Quin 2, that the [Ca2+]i is particularly sensitive to changes in [Ca2+]e. Sequential increases in [Ca2+]e as small as 0.1 mM evoke clear elevations in [Ca2+]i. In contrast, other cell types tested did not alter their [Ca2+]i in response to increasing [Ca2+]e even to levels as high as 4.0 mM. Sequential 1.0 mM increments in [Ca2+]e caused the [Ca2+]i to rise from a base line of 357 +/- 20 nM Ca2+i at 1.0 mM Ca2+e to a maximum of 1066 +/- 149 nM Ca2+i at 5.0 mM Ca2+e. [Ca2+]e above 2.0 mM produced a biphasic response in [Ca2+]i consisting of an immediate (less than 5 s) spike followed by a decay to a new plateau. Treatment of rMTC 44-2 cells with either 50 mM K+ or 100 nM ionomycin at 1.0 mM Ca2+e caused an immediate spike in [Ca2+]i to micromolar levels. Pretreatment with EGTA or verapamil inhibited completely the increase in [Ca2+]i induced by 50 mM K+. However, pretreatment with EGTA only slightly attenuated the spike phase in [Ca2+]i produced by ionomycin, demonstrating that ionomycin released intracellular stores of calcium. We conclude that rMTC 44-2 cells regulate [Ca2+]i by monitoring small physiological changes in [Ca2+]e, the primary secretagogue for C-cells.  相似文献   

20.
A new principle is described for imaging intracellular free calcium [Ca2+]i changes in single, living cells utilizing the fluorescent probe Fura-2. It is based upon video color mixing in real time and allows high-speed visualization, at maximum image resolution, of [Ca2+]i changes without digital image ratioing. The epifluorescence images produced by 340 and 380 nm excitations are stored in two memory buffers of a personal computer-based image processing system. Two video signals are generated independently from each buffer and connected to the red and green inputs of a video display. An image is this way created, in which [Ca2+]i shows up as a specific hue, whereas changes in dye concentration, light intensity, cell thickness show up as variations in brightness of the imaged cells. The method has advantages over conventional ratio imaging, notably simplicity and speed, since no calculations are made. Yet it can be combined with traditional digital image processing. The imaging technique allows monitoring of [Ca2+]i changes in rapidly moving cells, like neutrophils. It is demonstrated that during random locomotion on serum-coated glass surfaces, [Ca2+]i levels appeared to oscillate and that the frequency of the oscillations are related to locomotive activity. Furthermore, in Ca2+ free medium, the cells continue to move and phagocytose in the presence of Ca2+ ionophore (ionomycin) and 2 mM EGTA. In the presence of 1 mM extracellular Ca2+, ionomycin-treated cells were not able to move or phagocytose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号