首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic divergence for characters pertaining to reproductive isolation is of considerable interest in evolutionary biology. Since most studies concentrate on sibling species (for recent reviews, see Wu et al. 1996), we would like to know how much genetic variation exists between populations that are at an incipient stage of speciation. To answer this question, we have begun measuring variations in mating preference among natural isolates of Drosophila melanogaster, represented by the cosmopolitan and Zimbabwe sexual races. We quantify the variation in mating preference and success in both sexes by using a multiple-choice design and an index that is suited to cases of strong asymmetry in mate choice. Different designs and indices for measuring sexual isolation are also discussed. These sexual traits are entirely genetically determined. Surveying four populations in southern Africa and additional cosmopolitan lines, we observe extensive genetic variation in sexual characters as well as strong correlation between sexes. The populations are highly differentiated and represent various stages of evolution between the African and the cosmopolitan type of sexual behaviors. The genetic variation and correlation for these sexual characters coupled with their geographical pattern have interesting implications for models of speciation by sexual selection.  相似文献   

2.
We monitored the phenotypic and genotypic changes that occur when two behavioral races come into contact in laboratory populations. Drosophila melanogaster from Zimbabwe and nearby regions (Z type) show strong but asymmetric sexual isolation from their cosmopolitan counterparts (M type). Crosses of Z females and M males do not take place readily when other choices are available. At least 15 loci are known to control Z-type mating preferences and performance. By thoroughly mixing the genomes of the two types in laboratory populations, we artificially created maximum secondary contact. Despite the strength of sexual selection favoring Z-type male characters, Z-type behavior is eliminated or greatly diminished in all 12 hybrid populations after only 60 generations. This trend is consistent with the spread of the M-type behavior throughout the world as well as a detailed analysis of fitness components. Surprisingly, in contrast with the phenotypic convergence toward the M-type, genotypic samples broadly covering the genomic regions of mapped behavioral loci show no such trend. The genome appears to be "fine grained," with adjacent loci having different evolutionary dynamics and genealogical histories.  相似文献   

3.
Fang S  Takahashi A  Wu CI 《Genetics》2002,162(2):781-784
Examples of genes governing behavioral isolation are scarce. Here we report that a regulatory mutation in desaturase 2, known to determine a pheromonal polymorphism in Drosophila melanogaster females, may be such an example. This mutation is strongly correlated with the mating pattern between the Zimbabwe and cosmopolitan races of this species. These two behavioral races appear to be at the incipient stage of speciation. The desaturase 2 mutation may be one of the many loci underlying the behavioral differences between the two races.  相似文献   

4.
5.
Understanding the biological conditions and the genetic basis of early stages of sexual isolation and speciation is an outstanding question in evolutionary biology. It is unclear how much genetic and phenotypic variation for mating preferences and their phenotypic cues is segregating within widespread and human-commensal species in nature. A recent case of incipient sexual isolation between Zimbabwe and cosmopolitan populations of the human-commensal fruit fly Drosophila melanogaster indicates that such species may initiate the process of sexual isolation. However, it is still unknown whether other geographical populations have undergone evolution of mating preferences. In this study we present new data on multiple-choice mating tests revealing partial sexual isolation between the United States and Caribbean populations. We relate our findings to African populations, showing that Caribbean flies are partially sexually isolated from Zimbabwe flies, but mate randomly with West African flies, which also show partial sexual isolation from the United States and Zimbabwe flies. Thus, Caribbean and West African populations seem to exhibit distinct mating preferences relative to populations in the United States and in Zimbabwe. These results suggest that widespread and human-commensal species may harbor different types of mating preferences across their geographical ranges.  相似文献   

6.
H. Hollocher  C. T. Ting  M. L. Wu    C. I. Wu 《Genetics》1997,147(3):1191-1201
The collection of Drosophila melanogaster from Zimbabwe and nearby regions (the Z-type) yield females who would not mate with the cosmopolitan D. melanogaster males (the M-type). To dissect the genetic basis of this sexual isolation, we constructed 16 whole-chromosome substitution lines between two standard Z-and M-lines. The results were as follows: (1) All substitution lines appear normal in viability and fertility in both sexes, indicating no strong postmating isolation. (2) The genes for the behaviors are mapped to all three major chromosomes with the same ranking and comparable magnitude of effects for both sexes: III > II >> X >/= 0 (III, II and X designate the effects of the three chromosomes). The results suggest less evolution on the X than on autosomes at loci of sexual behavior. (3) The genes for ``Z-maleness' are many and somewhat redundant. Whole-chromosome effects for Z-maleness appear nearly additive and show little dominance. (4) In contrast, ``Z-femaleness' has less redundancy as partial genotypes never exhibit full phenotypic effects. Epistatic interactions and incomplete dominance can sometimes be detected. (5) The extensive genetic divergence underlying sexual isolation has evolved in the absence of detectable reduction in hybrid fitnesses. Sexual selection has apparently been a driving force of multiple facets of speciation at the nascent stage without reinforcement.  相似文献   

7.
Carracedo MC  Suarez C  Casares P 《Genetica》2000,108(2):155-162
The sexual isolation among the related species Drosophila melanogaster, D. simulans and D. mauritiana is asymmetrical. While D. mauritiana males mate well with both D. melanogaster and D. simulans females, females of D. mauritiana discriminate strongly against males of these two species. Similarly, D. simulans males mate with D. melanogaster females but the reciprocal cross is difficult. Interspecific crosses between several populations of the three species were performed to determine if (i) males and females of the same species share a common sexual isolation genetic system, and (ii) males (or females) use the same genetic system to discriminate against females (or males) of the other two species. Results indicate that although differences in male and female isolation depend on the populations tested, the isolation behaviour between a pair of species is highly correlated despite the variations. However, the rank order of the isolation level along the populations was not correlated in both sexes, which suggests that different genes act in male and female sexual isolation. Neither for males nor for females, the isolation behaviour of one species was paralleled in the other two species, which indicates that the genetic systems involved in this trait are species-pair specific. The implications of these results are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Drosophila melanogaster is known to have two races in the incipient stages of speciation that exhibit strong asymmetric premating isolation: Zimbabwe (Z) and cosmopolitan (M). In a study examining the phenotypic and genotypic evolution after secondary contact, we found that despite strong sexual selection favoring the Z-type behavior, it is the M-type behavior that comes to dominate hybrid populations. This article examines the fitness costs associated with the Z-type behavior. We have discovered that these costs are great enough to explain the failure of the Z-type behavior to prosper. Here we report that Z-type females produce approximately half the number of offspring that M-type females produce. Furthermore, crosses between populations have revealed that Z-type females mated to M-type males have approximately 20% fewer offspring than the reciprocal crosses because of an inability of M-type sperm to successfully fertilize Z-type eggs. Hybrid crosses also exhibit much-reduced numbers of viable offspring in addition to reduced hybrid male fertility. These fitness effects suggest that multiple mechanisms of postmating isolation have evolved concurrently with the divergence in behavior.  相似文献   

9.
Reproductive isolation restricts genetic exchange between species. Various pre- and post-mating barriers, such as behavior, physiology and gametic incompatibility, have been shown to evolve in sympatry. In certain scenarios, isolation can be asymmetrical, where species differentially prefer conspecifics. We examined sexual isolation via conspecific mate preference between Gambusia affinis and G. geiseri in both sexes. To investigate male contribution to sexual isolation, we compared the number of mating attempts (gonopodial thrusts) directed at either a conspecific or a heterospecific female, in both species. We also examined sperm priming and expenditure in males in the presence of conspecific or heterospecific females. We then measured female preference for either a conspecific or heterospecific male, in both species. We found that males of both species preferred to mate with conspecific females, but showed no difference in sperm production or expenditure between conspecific and heterospecific females. Females of both species did not prefer conspecific over heterospecific males. Our results suggest that sexual isolation might be mediated by male mate choice in this system and not female choice, suggesting that there is asymmetrical reproductive isolation between the sexes in G. affinis and G. geiseri, but symmetrical species isolation.  相似文献   

10.
Reinforcement of species boundaries may alter mate recognition in a way that also affects patterns of mate preference among conspecific populations. In the fly Drosophila subquinaria, females sympatric with the closely related species D. recens reject mating with heterospecific males as well as with conspecific males from allopatric populations. Here, we assess geographic variation in behavioral isolation within and among populations of D. subquinaria and use cline theory to understand patterns of selection on reinforced discrimination and its consequences for sexual isolation within species. We find that selection has fixed rejection of D. recens males in sympatry, while significant genetic variation in this behavior occurs within allopatric populations. In conspecific matings sexual isolation is also asymmetric and stronger in populations that are sympatric with D. recens. The clines in behavioral discrimination within and between species are similar in shape and are maintained by strong selection in the face of gene flow, and we show that some of their genetic basis may be either shared or linked. Thus, while reinforcement can drive extremely strong phenotypic divergence, the long‐term consequences for incipient speciation depend on gene flow, genetic linkage of discrimination traits, and the cost of these behaviors in allopatry.  相似文献   

11.
The European corn borer (ECB) consists of at least two, genetically differentiated host races: one feeding on maize, the other feeding on mugwort and hop. It is unclear to what extent individuals feeding on these, or other host plants, contribute to natural ECB populations. The mechanisms underlying the genetic differentiation between both races are not well understood; they may include sexual attraction via different pheromone blends (E or Z) and differences in the location of mating sites. We caught adult males with traps baited with the E or the Z blend at hop, maize, and 'mixed' sites. We determined their probable host race by allozyme-based genetic assignment, and the photosynthetic type of their host plant by stable carbon isotope analysis. Most individuals caught in Z traps had emerged from a C(4)-type plant and belonged to the maize race, whereas most individuals caught in E traps had emerged from C(3)-type plants and were but weakly differentiated from the hop-mugwort race, suggesting a strong, though not absolute, correspondence between host plant, host race and pherotype. We also found that although spatial segregation may contribute to genetic isolation between host races, moths of both host races may be present at a given location. Regarding the management of Bacillus thuringiensis (Bt) maize, our results indicate that, at least at the present study sites, it is unlikely that any wild or cultivated C(3)-type plant species could be a source of susceptible individuals that would mate randomly with Bt-resistant Z-C(4) moths emerging from Bt-maize fields.  相似文献   

12.
Why are females so choosy when it comes to mating? This question has puzzled and marveled evolutionary and behavioral ecologists for decades. In mating systems in which males provide direct benefits to the female or her offspring, such as food or shelter, the answer seems straightforward — females should prefer to mate with males that are able to provide more resources. The answer is less clear in other mating systems in which males provide no resources (other than sperm) to females. Theoretical models that account for the evolution of mate choice in such nonresource-based mating systems require that females obtain a genetic benefit through increased offspring fitness from their choice. Empirical studies of nonresource-based mating systems that are characterized by strong female choice for males with elaborate sexual traits (like the large tail of peacocks) suggest that additive genetic benefits can explain only a small percentage of the variation in fitness. Other research on genetic benefits has examined nonadditive effects as another source of genetic variation in fitness and a potential benefit to female mate choice. In this paper, we review the sexual selection literature on genetic quality to address five objectives. First, we attempt to provide an integrated framework for discussing genetic quality. We propose that the term ‘good gene’ be used exclusively to refer to additive genetic variation in fitness, ‘compatible gene’ be used to refer to nonadditive genetic variation in fitness, and ‘genetic quality’ be defined as the sum of the two effects. Second, we review empirical approaches used to calculate the effect size of genetic quality and discuss these approaches in the context of measuring benefits from good genes, compatible genes and both types of genes. Third, we discuss biological mechanisms for acquiring and promoting offspring genetic quality and categorize these into three stages during breeding: (i) precopulatory (mate choice); (ii) postcopulatory, prefertilization (sperm utilization); and (iii) postcopulatory, postfertilization (differential investment). Fourth, we present a verbal model of the effect of good genes sexual selection and compatible genes sexual selection on population genetic variation in fitness, and discuss the potential trade-offs that might exist between mate choice for good genes and mate choice for compatible genes. Fifth, we discuss some future directions for research on genetic quality and sexual selection.  相似文献   

13.
Sexual isolation is often assumed to arise because choosy females recognize and reject heterospecific males as mates. Yet in taxa in which both males and females are choosy, males might also recognize and reject heterospecific females. Here, we asked about the relative contribution of the sexes to the strong sexual isolation found in limnetic–benthic species pairs of threespine sticklebacks, which show mutual mate choice. We asked whether males and females of the two species recognize conspecifics and also prefer to mate with them. We found evidence for mate recognition by both sexes but only females prefer conspecifics. The nature of male courtship depended on which species of female they were courting, indicating that males recognized conspecific females and differentiated them from heterospecifics. However, males courted both species of females with equal vigor and changed courtship in a manner that would increase the chance of mating with heterospecifics. Females both recognized conspecifics and strongly preferred them. They responded very little to heterospecific male courtship and almost never mated with them. Therefore, males are likely to undermine sexual isolation, but females uphold it. Despite mutual mate choice and mate recognition in both sexes, females are primarily responsible for sexual isolation in these taxa.  相似文献   

14.
Diversification in sexual signals is often taken as evidence for the importance of sexual selection in speciation. However, in order for sexual selection to generate reproductive isolation between populations, both signals and mate preferences must diverge together. Furthermore, assortative mating may result from multiple behavioral mechanisms, including female mate preferences, male mate preferences, and male–male competition; yet their relative contributions are rarely evaluated. Here, we explored the role of mate preferences and male competitive ability as potential barriers to gene flow between 2 divergent lineages of the tawny dragon lizard, Ctenophorus decresii, which differ in male throat coloration. We found stronger behavioral barriers to pairings between southern lineage males and northern lineage females than between northern males and southern females, indicating incomplete and asymmetric behavioral isolating barriers. These results were driven by both male and female mate preferences rather than lineage differences in male competitive ability. Intrasexual selection is therefore unlikely to drive the outcome of secondary contact in C. decresii, despite its widely acknowledged importance in lizards. Our results are consistent with the emerging view that although both male and female mate preferences can diverge alongside sexual signals, speciation is rarely driven by divergent sexual selection alone.  相似文献   

15.
Determining whether reproductive isolation evolves through mate choice and/or gametic factors that prevent fertilization or through the post‐zygotic mechanisms of hybrid sterility or inviability is fundamental to understanding speciation. Investigation of the pre‐ and post‐zygotic components of reproductive isolation is facilitated in the pseudoscorpion, Cordylochernes scorpioides, by its indirect method of sperm transfer and viviparous embryonic development. Previous research on this species, in which mate discrimination was assessed in virgin females, suggested that female choice played only a minor role in reproductive isolation between populations from French Guiana and Panamá. Here, in a study of three allopatric populations of C. scorpioides from Panamá, we assessed mating‐stage isolation in both virgin and once‐mated females, and found that female discrimination depends critically on mating status. Virgin females were almost invariably receptive, showing no tendency to discriminate against males from allopatric populations. By contrast, non‐virgin females were significantly more likely to reject foreign males than males from their own population. Male sexual motivation could not account for differences in either female sexual receptivity or male success in sperm transfer. Allopatric and sympatric males did not differ in number of spermatophores deposited as either a female’s first or second mate. Nonetheless, allopatric males achieved significantly lower sperm transfer success not only with choosy, non‐virgin females but also with virgin females. Given the lack of behavioral discrimination by virgin females, female receptivity was not the only factor influencing differences in sperm transfer success. Multivariate analysis of spermatophore morphology suggests that the higher failure rate of matings between allopatric males and virgin females resulted from population differences in sperm packet architecture. Overall, our findings indicate that assessment of discrimination against allopatric males that is limited to virgin females may seriously underestimate the contribution of female mate choice to reproductive isolation between populations.  相似文献   

16.
Abstract The existence of a direct link between intensity of sexual selection and mating-system type is widely accepted. However, the quantification of sexual selection has proven problematic. Several measures of sexual selection have been proposed, including the operational sex ratio (OSR), the breeding sex ratio (BSR), and the opportunity for sexual selection (I(mates)). For a wild population of pronghorn (Antilocapra americana), we calculated OSR and BSR. We estimated I(mates) from census data on the spatial and temporal distribution of receptive females in rut and from a multigenerational genetic pedigree. OSR and BSR indicated weak sexual selection on males, but census and pedigree I(mates) suggested stronger sexual selection on males than on females. OSR and BSR correlated with census but not pedigree estimates of I(mates), and census I(mates) did not correlate with pedigree estimates. This suggests that the behavioral mating system, as deduced from the spatial and temporal distribution of females, does not predict the genetic mating system of pronghorn. The differences we observed between estimators were primarily due to female mate sampling and choice and to the sex ratio. For most species, behavioral data are not perfectly accurate and therefore will be an insufficient alternative to using multigenerational pedigrees to quantify sexual selection.  相似文献   

17.
The interaction between natural and sexual selection is central to many theories of how mate choice and reproductive isolation evolve, but their joint effect on the evolution of mate recognition has not, to my knowledge, been investigated in an evolutionary experiment. Natural and sexual selection were manipulated in interspecific hybrid populations of Drosophila to determine their effects on the evolution of a mate recognition system comprised of cuticular hydrocarbons (CHCs). The effect of natural selection in isolation indicated that CHCs were costly for males and females to produce. The effect of sexual selection in isolation indicated that females preferred males with a particular CHC composition. However, the interaction between natural and sexual selection had a greater effect on the evolution of the mate recognition system than either process in isolation. When natural and sexual selection were permitted to operate in combination, male CHCs became exaggerated to a greater extent than in the presence of sexual selection alone, and female CHCs evolved against the direction of natural selection. This experiment demonstrated that the interaction between natural and sexual selection is critical in determining the direction and magnitude of the evolutionary response of the mate recognition system.  相似文献   

18.
The behavioral basis of sexual isolation was investigated in 11 crosses staged between individuals from nine allopatric populations of the Appalachian mountain dusky salamander, Desmognathus ochrophaeus. Scan-sampled observations of within-population (homotypic) and between-population (heterotypic) heterosexual encounters yielded the following results. 1) Fewer heterotypic encounters than homotypic encounters resulted in insemination of females. Indices of the strength of sexual isolation based on insemination data ranged from 0.26 (lowest) to 0.82 (highest), indicating that mechanisms that confer sexual isolation may evolve during allopatric differentiation. 2) Heterotypic encounters that progressed as far as the stage of courtship during which the male stimulates the female to mate did so at the same time as homotypic encounters, although the number of the former reaching this stage was lower. 3) The time interval from courtship initiation to insemination was longer in heterotypic encounters than homotypic encounters. In some crosses, males did not attempt to initiate heterotypic encounters, indicating that this sex is responsible for sexual isolation in these instances. We use our results to formulate specific hypotheses concerning the behavioral basis of sexual isolation in these salamanders, and some possible experimental approaches are suggested.  相似文献   

19.
Co‐evolutionary arms races have provided clear evidence for evolutionary change, especially in host–parasite systems. The evolution of host‐specific races in the common cuckoo (Cuculus canorus), however, is also an example where sexual conflict influences the outcome. Cuckoo females benefit from better adaptation to overcome host defences, whereas cuckoo males face a trade‐off between the benefits of better adaptation to a host and the benefits of multiple mating with females from other host‐races. The outcome of this trade‐off might be genetic differentiation or prevention of it by genetic swamping. We use a simulation model to test which outcome is more likely with three sympatric cuckoo host‐races. We assume a cost for cuckoo chicks that express a host adaptation allele not suited to their foster host species and that cuckoo males that switch to another host‐race experience either a fitness benefit or cost. Over most of the parameter space, cuckoo male host‐race fidelity increases significantly with time, and gene flow between host‐races ceases within a few thousand to a hundred thousand generations. Our results hence support the idea that common cuckoo host‐races might be in the incipient stages of speciation.  相似文献   

20.
Drosophila ananassae and Drosophila pallidosa are closely related species that can produce viable and fertile hybrids of both sexes, although strong sexual isolation exists between the two species. Females are thought to discriminate conspecific from heterospecific males based on their courtship songs. The genetic basis of female discrimination behavior was analyzed using isogenic females from interspecific mosaic genome lines that carry homozygous recombinant chromosomes. Multiple regression analysis indicated a highly significant effect of the left arm of chromosome 2 (2L) on the willingness of females to mate with D. ananassae males. Not only 2L but also the left arm of chromosome X (XL) and the right arm of chromosome 3 (3R) had significant effects on the females' willingness to mate with D. pallidosa males. All regions with strong effects on mate choice have chromosome arrangements characterized by species-specific inversions. Heterospecific combinations of 2L and 3R have previously been suggested to cause postzygotic reproductive isolation. Thus, genes involved in premating as well as postmating isolation are located in or near chromosomal inversions. This conclusion is consistent with the recently proposed hypothesis that "speciation genes" accumulate at a higher rate in non-recombining genome regions when species divergence occurs in the presence of gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号