首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 999 毫秒
1.
Nucleotide sequence analysis and transposon 5 (Tn5) insertional mutagenesis indicate that the Escherichia coli gene pheR encodes tRNA(Phe) and not a repressor protein as previously reported. The coding region of pheR is identical to that of three other cloned tRNA(Phe) genes, pheU, pheV, and pheW. Multicopy plasmids carrying pheR, like those carrying pheU, pheV, or pheW, complement a temperature-sensitive lesion in the gene for the alpha-subunit of phenylalanyl-tRNA synthetase (pheS). The nucleotide sequences of the 5'-flanking DNA of pheR, pheU, and pheW are almost identical but are quite different from the same region of pheV. By comparison with pheV, which has two tandem promoters, pheR was found to have a single promoter. The expression of pheA (encoding chorismate mutase/prephenate dehydratase) in strains carrying the pheR374 allele was decreased to similar extents by multicopy plasmids containing either pheR or pheV. It is proposed that this decrease in pheA expression and the increase in expression of pheA previously reported for chromosomal pheR mutants are both mediated through the attenuation control mechanism that regulates pheA.  相似文献   

2.
Among mutants of Escherichia coli resistant to p-fluorophenylalanine (PFP) were some with constitutive expression of the phenylalanine biosynthetic operon (the pheA operon). This operon is repressed in the wild type by phenylalanine. The mutation in three of these mutants mapped in the aroH-aroD region of the E. coli chromosome at 37 min. A plasmid bearing wild-type DNA from this region restored p-fluorophenylalanine sensitivity and wild-type repression of the pheA operon. Analysis of subclones of this plasmid and comparison of its restriction map with published maps indicated that the mutations affecting regulation of the pheA operon lie in the structural genes for phenylalanyl-tRNA synthetase, pheST, probably in pheS. Thus, the pheST operon has a role in the regulation of phenylalanine biosynthesis, the most likely being that wild-type phenylalanyl-tRNA synthetase maintains a sufficient intracellular concentration of Phe-tRNA(Phe) for attenuation of the pheA operon in the presence of phenylalanine. A revised gene order for the 37-min region of the chromosome is reported. Read clockwise, the order is aroD, aroH, pheT, and pheS.  相似文献   

3.
4.
pheV, one of the genes that code for tRNA(Phe), was deleted from the chromosome of a strain of Escherichia coli K-12. As a consequence of this mutation, expression of pheA, the gene for chorismate mutase P-prephenate dehydratase, the first enzyme in the terminal pathway of phenylalanine biosynthesis, was derepressed. Similar derepression of pheA has been reported in pheR mutants of E. coli K-12 (J. Gowrishankar and J. Pittard, J. Bacteriol. 150:1130-1137, 1982). Attempts to introduce a pheR mutation into the delta pheV strain failed under circumstances suggesting that this combination of mutations is lethal. Southern blot analysis of pheV+ and delta pheV strains indicated that there are only two tRNA(Phe) genes in E. coli. It is recommended that the names pheU and pheV be retained for these genes.  相似文献   

5.
4-Fluorophenylalanine-resistant mutants of Salmonella typhimurium were isolated in which synthesis of chorismate mutase P-prephenate dehydratase (specified by pheA) was highly elevated. Transduction analysis showed that the mutation affecting pheA activity was not linked to pheA, and conjugation and merodiploid analysis indicated that it was in the 95- to 100-min region of the Salmonella chromosome. Evidence is presented for the hypothesis that the mutation responsible for constitutivity of chorismate mutase P-prephenate dehydratase occurred in pheR, a gene specifying a cytoplasmic product that affected pheA. pheR mutants were found to carry a second mutation, tyrO. The tyrO mutation acts cis to cause increased levels of the tyrosine biosynthetic enzymes 3-deoxy-d-arabinoheptulosonate 7-phosphate synthetase (tyr) and prephenate dehydrogenase, but it has no effect on regulation of pheA.  相似文献   

6.
7.
8.
Molecular cloning of pheR in Escherichia coli K-12.   总被引:5,自引:4,他引:1       下载免费PDF全文
The regulator gene pheR, which in Escherichia coli controls the expression of pheA, the structural gene for chorismate mutase P-prephenate dehydratase, was cloned on to multicopy plasmids directly from the E. coli chromosome; this was achieved with the aid of the tetracycline resistance transposon, Tn10, that had been inserted very close to the pheR gene. Subsequently, pheR was subcloned on a 1.1-kilobase-pair fragment on the plasmid vector pBR322; its position on the plasmid was localized by the method of gamma delta-mediated transpositional inactivation. The pheR gene product was identified in maxicells and found to be a protein of subunit molecular weight 19,000, suggesting that the coding segment of the gene is about 500 nucleotide pairs long.  相似文献   

9.
10.
Several types of 4-fluorophenylalanine resistant mutants were isolated. In one type of mutant DAHP synthetase (tyr) and prephenate dehydrogenase were coordinately derepressed. The mutation was linked to aroF and tyrA and was cis- dominant by merodiploid analysis, thus confirming that it is an operator constitutive mutation (tyrOc). A second type of mutation showed highly elevated levels of tyrosine pathway enzymes which were not repressed by L-tyrosine. It was unlinked to tyrA and aroF, and was trans-recessive in merodiploids. These properties were attributed to a mutation in a regulator gene, tyrR (linked to pyr F), that resulted in altered or non-functional aporepressor. Hence tyrO, tyrA, and aroF constitute an operon regulated by tyrR. In a third type of mutation chorismate mutase P-prephenate dehydratase was highly elevated. It was not linked to pheA, was located in the 95--100 min region of the Salmonella chromosome, and was recessive to the wild type gene in merodiploids. A mutation was, therefore, indicated in a regulatory gene, pheR, which specified an aporepressor for regulating pheA. DAHP synthetase (phe), specified by aroG, was not regulated by pheR, but was derepressed in one of the tyrR mutants, suggesting that as in Escherichia coli tyrR may regulate DAHP synthetase(phe) and DAHP synthetase (tyr) with the same aporepressor. A novel mutation in chorismate mutase is described.  相似文献   

11.
Two mutants of pheV, a gene coding for tRNA(Phe) in Escherichia coli, were previously isolated because they affect attenuator control of the pheS, T operon when the mutant pheV genes are carried by the plasmid pBR322. We show that the two mutants (A44 and A46) affect attenuator control by different mechanisms. The effect of mutant A44 on pheS, T expression can be progressively decreased by overproduction of Phe-tRNA synthetase, consistent with the mutant tRNA acting as a competitive inhibitor of the enzyme. By contrast, the effect on attenuation of mutant A46 increases with overproduction of Phe-tRNA synthetase, indicating that the mutant must be charged to affect attenuation; we propose that this mutant affects translation directly and causes derepression by competing with wild-type tRNA in translation of the attenuator region leader peptide. Mutant A46 but not mutant A44 leads to further de-attenuation in a miaA background. The presence of two different mechanisms for de-attenuation is further indicated by the finding that a second attenuator controlled by Phe codon translation, from the pheA operon, is affected quite differently by the mutant tRNAs. Finally, experiments involving the introduction of the mutations A44 and A46 into an amber suppressor derived from tRNA(Phe) suggest that both species can function in protein synthesis but with reduced efficiency; mutant A46 is less efficient than mutant A44, consistent with a defect in elongation.  相似文献   

12.
13.
Four mutants of pheV, a gene coding for tRNA(Phe) in Escherichia coli, share the characteristic that when carried in the plasmid pBR322, they lose the capacity of wild-type pheV to complement the thermosensitive defect in a mutant of phenylalanyl-tRNA synthetase. One of these mutants, leading to the change C2----U2 in tRNA(Phe), is expressed about 10-fold lower in transformed cells than wild-type pheV. This mutant, unlike the remaining three (G15----A15, G44----A44, m7G46----A46), can recover the capacity to complement thermosensitivity when carried in a plasmid of higher copy number. The other three mutants, even when expressed at a similar level, remain unable to complement thermosensitivity. A study of charging kinetics suggests that the loss of complementation associated with these mutants is due to an altered interaction with phenylalanyl-tRNA synthetase. The mutant gene pheV (U2), when carried in pBR322, can also recover the capacity to complement thermosensitivity through a second-site mutation outside the tRNA structural gene, in the discriminator region. This mutation, C(-6)----T(-6), restores expression of the mutant U2 to about the level of wild-type tRNA(Phe).  相似文献   

14.
L-phenylalanine (L-Phe) is an aromatic amino acid with diverse commercial applications. Technologies for industrial microbial synthesis of L-Phe using glucose as a starting raw material currently achieve a relatively low conversion yield (Y(Phe/Glc)). The purpose of this work was to study the effect of PTS (phosphotransferase transport system) inactivation and overexpression of different versions of feedback inhibition resistant chorismate mutase-prephenate dehydratase (CM-PDT) on the yield (Y(Phe/Glc)) and productivity of L-Phe synthesized from glucose. The E. coli JM101 strain and its mutant derivative PB12 (PTS(-)Glc(+) phenotype) were used as hosts. PB12 has an inactive PTS, but is capable of transporting and phosphorylating glucose by using an alternative system constituted by galactose permease (GalP) and glucokinase activities (Glk). JM101 and PB12 were transformed with three plasmids, harboring genes that encode for a feedback inhibition resistant DAHP synthase (aroG(fbr)), transketolase (tktA) and either a truncated CM-PDT (pheA(fbr)) or its derived evolved genes (pheA(ev1) or pheA(ev2)). Resting-cells experiments with these engineered strains showed that JM101 and PB12 strains expressing either pheA(ev1) or pheA(ev2) genes produced l-Phe from glucose with Y(Phe/Glc) of 0.21 and 0.33 g/g, corresponding to 38 and 60% of the maximum theoretical yield (0.55 g/g), respectively. In addition, in both engineered strains the reached q(Phe) high levels of 40 mg/g-dcw.h. The metabolic engineering strategy followed in this work, including a strain with an inactive PTS, resulted in a positive impact over the Y(Phe/Glc), enhancing it nearly 57% compared with its PTS(+) counterpart. This is the first report wherein PTS inactivation was a successful strategy to improve the Y(Phe/Glc).  相似文献   

15.
The pheST operon codes for the two subunits of phenylalanyl-tRNA synthetase and it expression is controlled by attenuation in a way similar to many amino acid biosynthetic operons. The nucleotide sequence of the control regions of the operon indicates the presence of several open reading frames besides that of the leader peptide. One of these open reading frames, called the alternative leader peptide, starts at about the same place as the leader peptide and ends after the terminator of the attenuator. Another open reading frame, called the terminator peptide, starts after the terminator and covers about half the distance to pheS, the first structural gene of the operon. The present report shows that, in fact, the only open reading frame to be translated efficiently is the leader peptide itself. The alternative leader peptide and the terminator peptide are both translated at a negligible rate.  相似文献   

16.
17.
The respiratory defect of pet mutants of Saccharomyces cerevisiae assigned to complementation group G120 has been ascribed to their inability to acylate the mitochondrial phenylalanyl tRNA. A fragment of wild type yeast genomic DNA capable of complementing the genetic lesion of G120 mutants has been cloned by transformation with a yeast genomic recombinant library of a representative mutant from this complementation group. The gene designated as MSF1 has been subcloned on a 2.2-kilobase pair fragment and its nucleotide sequence determined. The predicted protein product of MSF1 has a molecular weight of 55,314 and has several domains of high primary sequence homology to the alpha subunit of the Escherichia coli phenylalanyl-tRNA synthetase. Based on the phenotype of G120 mutants and the homology to the bacterial protein, MSF1 is proposed to code for the alpha subunit of yeast mitochondrial phenylalanyl-tRNA synthetase. Disruption of the chromosomal copy of MSF1 in the respiratory-competent haploid strain W303-1B induces a phenotype similar to G120 mutants but does not affect cell viability, indicating that the cytoplasmic phenylalanyl-tRNA synthetase of yeast is encoded by a separate gene. Although the E. coli and yeast mitochondrial aminoacyl-tRNA synthetases are sufficiently similar in their primary sequences to suggest a common evolutionary origin, they have undergone significant changes as evidenced by the low homology in some regions of the polypeptide chains and the presence in the mitochondrial enzyme of two domains that are lacking in the bacterial phenylalanyl-tRNA synthetase.  相似文献   

18.
19.
A lysogenizing lambda phage, lambda dilv-lac11, was constructed to carry an ilvD-lac operon fusion. Expression from the phage of the ilvE and lacZ genes is controlled by an intact ilv control region also carried by this phage. Two spontaneous mutants of lambda dilv-lac11 that have high-level constitutive expression of the ilv-lac fusion operon were isolated by growth on a beta-chloroalanine selective medium. The mutants were shown by nucleotide sequence determination to contain large deletions (delta 2216, approximately 1.6 kilobases; delta 2219, approximately 1.9 kilobases), which in both cases remove the proposed ilv attenuator terminator. The rest of the ilv leader and promoter region DNA remains intact in these mutants. Deletion 2216 also removed part of the downstream ilvG gene, whereas delta 2219 extended through the entire ilvG gene into the ilvGE intercistronic region. A possible mechanism of deletion formation is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号