首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat endosperm was shown to contain an aspartic proteinase capable of hydrolyzing the wheat storage protein, gliadin, in vitro. The enzyme was purified to homogeneity by affinity chromatography on bacilliquin-silochrome, diethylaminoethyl-Toyopearl ion-exchange chromatography, chromatofocusing, and preparative polyacrylamide gel electrophoresis. The sedimentation constant of the enzyme was 3.4 S and the relative molecular mass (Mr), determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 58000 dalton (Da). The purified enzyme was completely inhibited by pepstain whereas other enzyme inhibitors did not affect its activity. The enzyme was found to hydrolyze mainly - and -gliadins with Mr's of 67000–95000 Da, with maximal activity at pH 4.5. The data make it possible to suggest that the enzyme has an endogenous function by initiating proteolysis of storage proteins in germinating wheat seeds.Abbreviations BSA bovine serum albumin - Da dalton - Mr relative molecular mass - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

2.
Two proteolytic enzymes, a cysteine proteinase and a carboxypeptidase, responsible for breakdown of the main storage protein, 13S globulin, were purified from buckwheat seedlings (Fagopyrum esculentum Moench) by (NH4)2SO4 fractionation, gel-filtration on Sephadex G-150, ionexchange chromatography on DEAE-Toyopearl 650 M and chromatofocusing. The cysteine proteinase was purified 74-fold. It has a pH optimum of 5.5, a pI of 4.5 and an apparent molecular mass (Mr) of 71000. The carboxypeptidase was purified 128-fold. It has a pH optimum of 5.3, a pI of 5.8 and a Mr of 78500. Cysteine proteinase hydrolyzed the modified 13S globulin only if the reaction products were eliminated from the incubation mixture by dialysis. Storage protein degradation by the proteinase increased in the presence of carboxypeptidase. We suggest that the two enzymes complete the digestion of 13S globulin after its preliminary hydrolysis by the earlier described enzyme, metalloproteinase, present in dry buckwheat seeds.Abbreviations BSA bovine serum albumin - DEAE diethylaminoethyl - Mr apparent molecular mass - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

3.
Using iron(III)porphyrins in combination with (diacetoxyiodo)benzene allows for the conversion of 2,9-bis(bromomethyl)-4,7-diphenyl-1,10-phenanthroline into 4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid. This method provides a cost-effective and environmentally-friendly oxidation procedure using less toxic PhI(OAc)2 and biologically relevant iron(III)porphyrins. The catalytic activity of five kinds of iron-metallated functional porphyrins were investigated using different oxidants, including air, H2O2, PhI(OAc)2, PhIO and NaClO. Our results showed that the use of T(p-NO2)PPFeCl with PhI(OAc)2 as the oxidant in the presence of water displays remarkable activity for the desired oxidation reaction. The generality of this method was examined by synthesizing the carboxylic acids of pyridines and quinolines.  相似文献   

4.
Erratum     
A specific copper chelator, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinedisulfonic acid substituted for mercaptoethanol to support growth of a L1210 lymphoma in primary culture. Added Cu++, but not Zn++ or Fe++ interfered with growth promotion by the chelator. It also can protect an established L1210 culture, which does not require mercaptoethanol, from cytotoxicity of two bis-thiosemicarbazones. Since these are known to require copper for cytotoxicity, the results indicate that 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinedisulfonic acid acts by removing a source of endogenous copper in the tissue culture medium which prevents growth of the primary culture.  相似文献   

5.
Casiopeínas® are mixed-chelate copper complexes with antitumor tested potential. Their activity, both in vitro and in vivo, as antiproliferative, cytotoxic, and genotoxic drugs has been assessed. Biological results of these copper compounds have deserved some of them entering clinical trials. Significant efforts have been devoted to the in-depth identification of their mechanism of action. Using gel electrophoresis analysis, we have previously shown that the interaction of the Casiopeínas® Cas II-gly, [Cu(4,7-dimethyl-1,10-phenanthroline)(glycinate)]NO3 with DNA, triggers the cleavage of the biomolecule by a free radical mechanism. In this work, we further study the behavior of different complexes of the same Casiopeínas® series also including glycinate as co-ligand {Cas VI-gly (5,6 dimethyl-1,10-phenanthroline glycinato copper(II) nitrate), Cas VII-gly (1,10-phenanthroline glycinato copper(II) nitrate), and Cas IX-gly (2,2′-bipyridine glycinato copper(II) nitrate)} and of a Casiopeínas® with a different co-ligand (Cas III-Cs; 4,7-dimethyl-1,10-phenanthroline salicylaldehydato-copper(II) nitrate). While all of them produce DNA degradation, the performance in the presence of a radical scavenger suggests the existence of differences in their mechanism of interaction with DNA.  相似文献   

6.
The formation of hydroxyl radical (OH·) from the oxidation of glutathione, ascorbic acid, NADPH, hydroquinone, catechol, and riboflavin by hydrogen peroxide was studied using a range of enzymes and copper and iron complexes as possible catalysts. Copper-1,10-phenanthroline appears to catalyze the production of OH· from hydrogen peroxide without superoxide radical being formed as an intermediate, and without the involvement of a catalyzed Haber-Weiss (Fenton) reaction. Superoxide radical is involved, however, in the Cu2+ -catalyzed decomposition of hydrogen peroxide, and in the oxidation of glutathione by atmospheric oxygen. For this latter oxidation, copper-4,7-dimethyl-1,10-phenanthroline was found to be a much more effective catalyst than the copper complex of 1,10-phenanthroline, which is normally used. Mechanisms for these reactions are proposed, and the toxicological significance of the ability of a variety of biological reductants to provide a prolific source of OH· when oxidized by hydrogen peroxide is discussed.  相似文献   

7.
NAD(P)H oxidation is frequently measured to assay the activity of the neutrophil O-2-generating oxidase. It was found that 10(-4) M ethylene glycol bis (beta-aminoethyl ether)-N-N'-tetraacetic acid (EGTA) increased NAD(P)H oxidation by the 27,000 g granule fraction of resting and stimulated human neutrophils without altering net O-2 production. The commonly used chelating agents EDTA and diethylene triamine pentaacetic acid had similar effects. The addition of superoxide dismutase eliminated the effect of the chelating agents and thus demonstrated that the stimulated reaction was dependent upon O-2. KCN and bathophenanthroline disulfonate, an iron-chelating agent, prevented O-2-dependent NADPH oxidation by neutrophil granule fractions in the presence of EGTA. In contrast, bathocuproine disulfonate, a copper-chelating agent, mimicked the EGTA effect. The effects of both bathophenanthroline disulfonate and bathocuproine disulfonate were completely abolished when the agents were saturated with iron and copper, respectively. All the chelating agents studied, except bathophenonthroline disulfonate, also promoted O-2-dependent NADPH oxidation in a system wherein O-2 was generated by xanthine oxidase. Thus, commonly used chelating agents, by interacting with available iron and copper, may alter the apparent stoichiometry of the neutrophil O-2-generating oxidase and artifactually increase NADPH oxidation in other systems where O-2 is present.  相似文献   

8.
Nitrite oxidoreductase was isolated from mixotrophically grown cells of Nitrobacter hamburgensis. The enzyme purified from heat treated membranes was homogeneous by the criteria of polyacrylamide gel electrophoresis and size exclusion chromatography. The monomeric form consisted of two subunits with Mr 115000 and 65000, respectively. The dimeric form of the enzyme contained 0.70 molybdenum, 23.0 iron, 1.76 zinc, and 0.89 copper. The catalytically active enzyme was investigated by visible and electron paramagnetic resonance spectroscopy (EPR) under oxidizing (as isolated), reducing (dithionite), and turnover (nitrite) conditions. As isolated the enzyme exhibited a complex set of EPR signals between 5–75 K, originating from several ironsulfur and molybdenum (V) centers. Addition of the substrate nitrite, or the reducing agent dithionite resulted in a set of new resonances. The molybdenum and the iron-sulfur centers of nitrite oxidoreductase from Nitrobacter hamburgensis were involved in the transformation of nitrite to nitrate.Abbreviations EPR electron paramagnetic resonance - ICP-AES inductively coupled plasma-atomic emission spectrometry - NaPi sodium phosphate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

9.
Summary Unproteolyzed gap junctions isolated from rat heart and liver were analyzed for the presence of inter-subunit disulfide bonds by sodium dodecylsulfate polyacrylamide gel electrophoresis. Rat cardiac junctions contained multiple disulfide bonds connecting theM r 47,000 subunits of the same connexon and of different connexons. Inter-subunit disulfide bonds were absent in liver junctions. Unproteolyzed rat heart gap junctions were resistant to deoxycholate in their oxidized state, but dissolved readily in the detergent when the disulfide bonds were cleaved with -mercaptoethanol. Disulfide bonding in proteolyzed cardiac junctions was limited to pairs ofM r 29,500 subunits. These junctions were not soluble in deoxycholate even in the presence of -mercaptoethanol. These results show that heart and liver junctions differ in their quarternary organization.  相似文献   

10.
Pyridoxal phosphate-dependent DOPA decarboxylase has been purified from bovine striatum to a specific activity of 1.6 U/mg protein. After ammonium sulfate precipitation (30–60%) it was purified by DEAE-Sephacel, Sephacryl S-200, and TSK Phenyl 5 PW chromatography. The purified enzyme showed a single silver staining band with polyacrylamide gel electrophoresis under both denaturing and non-denaturing conditions. The bovine striatal DOPA decarboxylase is a dimer (subunit Mr = 56000 by SDS-PAGE) with a native Mr of 106000 as judged by chromatography on Sephacryl S-200 and by sedimentation analysis. Similar to the DOPA decarboxylase purified from non-CNS tissues, the bovine striatal enzyme requires free sulfhydryl groups for activity, is strongly inhibited by heavy metal ions, and can decarboxylate 5-hydroxytryptophan as well. It should be noted, however, that the final enzyme preparation is enriched in DOPA decarboxylase activity. The distribution of the DOPA decarboxylase and 5-HTP decarboxylase activities also varies among several bovine brain regions. In addition, heat treatment of the enzyme preparation inactivated the two decarboxylation activities at different rates.Abbreviations AADC Aromatic L-amino Acid Decarboxylase - CNS Central Nervous System - DOPA 3,4-dihydroxyphenylalanine - DTT Dithiothreitol, 5-HTP - 5-hydroxytryptophan - Mr relative molecular weight - PLP pyridoxal 5-phosphate - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis Part of this paper was presented at the 1987 Annual Pharmacology and Toxicology Conferences held at University of North Dakota School of Medicine, North Dakota, USA Res Commun Psychol Psychiat Behav 12: 227–228, 1987 (Abstr).  相似文献   

11.
Cytosolic and nuclear forms of the glucocorticoid receptor were characterized using immunochemical techniques. Antibodies were raised in rabbits to an Mr 58,000 fragment of the transformed (DNA-binding) glucocorticoid receptor purified from rat liver cytosol by DNA-cellulose chromatography and polyacrylamide gel electrophoresis. Antibodies reacted with the transformed receptor form in a radioimmunoassay for glucocorticoid receptor. Western blot analysis of antibody reactivity revealed a single Mr 185,000 receptor form in rat liver cytosol but a smaller Mr 85,000 form in nucleosol, indicating the Mr 85,000 form is the transformed receptor. Furthermore, western blot analysis indicates that the Mr 185,000 receptor undergoes proteolysis during receptor purification and in vitro transformation processes by generating immunochemically similar proteins of smaller molecular weights. An identical Mr 185,000 glucocorticoid receptor was detected in cytosols of four rat tissues; liver, brain, adrenal medulla, and thymus. The glucocorticoid receptor was localized to the cytoplasm and nucleus of rat adrenal medulla cells by immunohistochemistry, demonstrating the existence in vivo of the transformed receptor and translocation of the receptor from cytoplasm to nucleus.  相似文献   

12.
Porcine low Mr phosphotyrosine protein phosphatase has been purified and the complete amino acid sequence has been determined. Both enzymic and chemical cleavages are used to obtain protein fragments. FAB mass spectrometry and enzymic subdigestion followed by Edman degradation have been used to determine the structure of the NH2-terminal acylated tryptic peptide. The enzyme consists of 157 amino acid residues, is acetylated at the NH2-terminus, and has arginine as COOH-terminal residue. It shows kinetic parameters very similar to other known low Mr PTPases. This PTPase is strongly inhibited by pyridoxal 5-phosphate (K=21M) like the low Mr PTPases from bovine liver, rat liver (AcP2 isoenzyme), and human erythrocyte (Bslow isoenzyme). The comparison of the 40–73 sequence with the corresponding sequence of other low Mr PTPases from different sources demonstrates that this isoform is highly homologous to the isoforms mentioned above, and shows a lower homology degree with respect to rat AcP1 and human Bfast isoforms. A classification of low Mr PTPase isoforms based on the type-specific sequence and on the sensitivity to pyridoxal 5-phosphate inhibition has been proposed.Abbreviations used PTPase phosphotyrosine protein phosphatase - TFA trifluoroacetic acid - SDS sodium dodecylsulfate - T tryptic peptides - SP endoproteinase Glu-C peptides - FAB fast atom bombardment - Ac acetyl - HPLC high-performance liquid chromatography - OPA o-phtaldialdehyde - PMSF phenylmethylsulfonyl fluoride - CD45 leukocyte common-antigen PTPase - LAR leukocyte-antigen-related PTPase - PTP IB human placental PTPase  相似文献   

13.
The enzyme acetyl-CoA: 17-O-deacetylvindoline 17-O-acetyltransferase which terminates vindoline biosynthesis has been isolated from Catharanthus roseus leaves, further characterized and purified to homogeneity by three step column chromatography and subsequent preparative isoelectric focusing. Kinetic properties concerning the enzyme reaction are discussed. Five multiple forms of the acetyl-transferase could be observed, each consisting of two subunits. This enzyme is now the best characterized of the enzymes involved in vindoline biosynthesis.Abbreviations DTE dithiothreitol - EDTA ethylenediamine-tetraacetic acid - HEPES N-(2-hydroxyethyl)-piperazine-N-2-ethanesulfonic acid - IEF isoelectric focusing - KPi potassium phosphate - Mr rel.molecular mass - PEG polyethylene glycol - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - Tris 2-amino-2-(hydroxymethyl)-1,3-propandiol  相似文献   

14.
This work summarizes observations from numerous investigators on the reaction of the copper-zinc superoxide dismutase with hydrogen peroxide at physiological pH in order to propose a likely sequence of events that leads to 2-oxo-histidine formation, copper loss, inactivation, and random and site-specific peptide fragmentation. New data is presented for the bovine liver enzyme that indicate copper is lost as the copper(I) form which immediately reacts with bathocuproine disulfonate to form the characteristic complex that absorbs at 485 nm. Studies in TRIS buffer ruled out the loss of copper(II) followed by reduction of the high potential copper(II)-bathocuproine disulfonate complex by buffer because TRIS is known not to reduce this complex. The rate of loss of copper(I) is not affected by the spin trap, 5,5'-dimethylpyrolline-N-oxide (DMPO), nor by replacing oxygen with argon in the reaction. In addition, changes in the native electrophoretic pattern that are correlated with copper loss and not peptide fragmentation are also unaffected by DMPO, argon, EDTA, or DTPA. These data are taken as indirect evidence that the formation of 2-oxo-histidine is the first oxidative event, unaffected by DMPO, that occurs at the bound oxidant and leads to loss of copper(I). Peptide fragmentation and the peroxidative activity of the dismutase are discussed in light of these observations.  相似文献   

15.
Crude protein extracts from the chickpea (Cicer arietinum) pathogenic fungus Ascochyta rabiei catalyze the hydroxylation of the pterocarpan phytoalexins medicarpin and maackiain to the corresponding 1a-hydroxy-1,4-diene-3-one derivatives. The enzyme reaction depends on NAD(P)H and molecular oxygen. Low amounts of FAD are necessary for maximal enzyme activity. The pterocarpan hydroxylase is a new flavoprotein monooxygenase with a molecular weight of 58 kDa in SDS-PAGE. The soluble enzyme can utilize NADH and NADPH with similar values for K m and V max respectively. The pterocarpan hydroxylase and a pterocarpan reductase (M r 29 kDa; Höhl and Barz 1987) are constitutively expressed by A. rabiei isolates.Abbreviations AAS atomic absorption spectroscopy - BCS bathocuproindisulfonate - BSA bovine serum albumin - FAD flavin-adenine dinucleotide - FMN flavin-mononucleotide - M r molecular weight - PAGE polyacrylamide gelelectrophoresis - pda pisatin demethylating ability - SDS sodium dodecylsulfate - Tris tris(hydroxymethyl)aminomethane  相似文献   

16.
The [RhCl3(N-N)(DMSO)] complexes, the N-N being 2,2′-bipyridine (1), 1,10-phenanthroline (2), 4,7-diphenyl-1,10-phenanthroline (3), 4,4′-dimethyl-2,2′-bipyridine (4) and 1,10-phenanthroline-5,6-dione (5), have been synthesized and characterized with spectroscopic methods. The compounds 2-5 adopt mer- and complex 1fac-structure. The molecular and electronic structure studies of mer- and fac-complexes with bpy and phen ligands at the DFT B3LYP level with 3-21G∗∗ basis set showed that mer-isomers are more stable. The cytostatic activity of the [RhCl3(N-N)(DMSO)] complexes against Caco-2 and A549 tumor cells have been studied. Their antibacterial activity have also been investigated. It has been found that the very promising biological activity show complexes 2, 3 and 4.  相似文献   

17.
Porcine low Mr phosphotyrosine protein phosphatase has been purified and the complete amino acid sequence has been determined. Both enzymic and chemical cleavages are used to obtain protein fragments. FAB mass spectrometry and enzymic subdigestion followed by Edman degradation have been used to determine the structure of the NH2-terminal acylated tryptic peptide. The enzyme consists of 157 amino acid residues, is acetylated at the NH2-terminus, and has arginine as COOH-terminal residue. It shows kinetic parameters very similar to other known low Mr PTPases. This PTPase is strongly inhibited by pyridoxal 5′-phosphate (K=21ΜM) like the low Mr PTPases from bovine liver, rat liver (AcP2 isoenzyme), and human erythrocyte (Bslow isoenzyme). The comparison of the 40–73 sequence with the corresponding sequence of other low Mr PTPases from different sources demonstrates that this isoform is highly homologous to the isoforms mentioned above, and shows a lower homology degree with respect to rat AcP1 and human Bfast isoforms. A classification of low Mr PTPase isoforms based on the type-specific sequence and on the sensitivity to pyridoxal 5?-phosphate inhibition has been proposed.  相似文献   

18.
Intracellular proteolytic activities ofB. megaterium KM occur soluble in the cytoplasm and periplasm and insoluble in the membrane. Two proteolytic enzymes were found in the cytoplasmic fraction by gel filtration on Sephadex G 150 and by polyacrylamide gel electrophoresis. The first enzyme called CI was stable, had a relative molecular mass ofM r=105000 (M=105 kg/mol) and was inhibited by EDTA and PMSF, whereas the second, designated CII, was labile and had a relative molecular mass ofM r=46000 (M=46 kg/mol). Because of its lability it could not be characterized in detail. In the “periplasm” only a single proteolytic enzyme P (M r=28000;M=28 kg/mol) inhibited by EDTA could be demonstrated. The extracellular enzyme exhibited similar properties. The membrane proteolytic activity was sensitive to PMSF and EDTA. The membrane enzymes have not yet been solubilized. In cells of the mutant KM 12 that does not produce the extracellular proteinase, only one type of proteinase, in all its properties identical with the cytoplasmic proteinase CI, could be demonstrated.  相似文献   

19.
When cells of Synechococcus PCC7942 were subjected to either iron or magnesium limitation, there was an appearance of specific proteins in the outer membrane (isolated as the cell wall fraction). Under iron limitation outer membrane polypeptides of M r 92000, 48000–50000 and 35000 appeared. Specific iron-limited outer membrane proteins (IRMPs) of M r 52000 and 36000 were also induced in iron-limited cultures of Synechocystis PCC6308. Under magnesium limitation polypeptides of M r 80000, 67000, 62000, 50000, 28000 and 25000 appeared in the outer membrane. phosphate limitation caused minor changes in the outer membrane protein pattern, with polypeptides of M r 32000 and one of over 100000 being induced, whereas calcium limitation had no apparent affect.Abbreviations EDDA ethylenediaminedihydroxyphenyl acetic acid - IRMP iron-regulated outer membrane protein - HEPES N-2-hydroxyethyl-piperazine-N-2-ethane sulphonic acid - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - PMSF phenylmethylsulphonyl fluoride  相似文献   

20.
Two distinct dihydrolipoamide dehydrogenases (E3s, EC 1.8.1.4) have been detected in pea (Pisum sativum L. cv. Little Marvel) leaf extracts and purified to at or near homogeneity. The major enzyme, a homodimer with an apparent subunit Mr value 56 000 (80–90% of overall activity), corresponded to the mitochondrial isoform studied previously, as confirmed by electrospray mass spectrometry and N-terminal sequence analysis. The minor activity (10–20%), which also behaved as a homodimer, copurified with chloroplasts, and displayed a lower subunit Mr value of 52 000 which was close to the Mr value of 52 614±9.89 Da determined by electrospray mass spectrometry. The plastidic enzyme was also present at low levels in root extracts where it represented only 1–2% of total E3 activity. The specific activity of the chloroplast enzyme was three-to fourfold lower than its mitochondrial counterpart. In addition, it displayed a markedly higher affinity for NAD+ and was more sensitive to product inhibition by NADH. It exhibited no activity with NADP+ as cofactor nor was it inhibited by the presence of high concentrations of NADP+ or NADPH. Antibodies to the mitochondrial enzyme displayed little or no cross-reactivity with its plastidic counterpart and available amino acid sequence data were also suggestive of only limited sequence similarity between the two enzymes. In view of the dual location of the pyruvate dehydrogenase multienzyme complex (PDC) in plant mitochondria and chloroplasts, it is likely that the distinct chloroplastic E3 is an integral component of plastidic PDC, thus representing the first component of this complex to be isolated and characterised to date.Abbreviations E1 pyruvate dehydrogenase - E2 dihydrolipoamide acetyltransferase - E3 dihydrolipoamide dehydrogenase - PDC pyruvate dehydrogenase complex - OGDC 2-oxoglutarate dehydrogenase complex - GDC glycine decarboxylase complex - SDS-PAGE sodium dodecyl sulphate/polyacrylamide gel electrophoresis - TDP thiamine diphosphate - Mr relative molecular mass J.G.L. is grateful to the Biotechnology and Biological Sciences Research Council (BBSRC), U.K. for continuing financial support. M.C. is the holder of a BBSRC-funded earmarked Ph.D. studentship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号