首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fresh crop and garden residues were applied both under laboratory conditions and in commercial greenhouse in order to asses their effect on soil nematodes populations and soil fertility. In the laboratory experiments, dosages of 5 to 20 g of cabbage residues, chicken manure, cabbage residues+chicken manure, grass+chicken manure, as well as leaves and stems of orange tree, pine tree, oleander, olive tree, palm tree and boxwood were mixed with 500 g soil having root-knot nematodes (Meloidogyne incognita) and soil moisture was adjusted at field capacity. A control treatment without residues was also included. The mixtures were kept into plastic bags, with four replications, and the bags were incubated for four weeks at 30 degrees C, when nematological and soil fertility analyses were carried out. In general, all these materials significantly (P < 0.05) reduced M. incognita populations and increased saprophagous nematodes, with slight effects on soil fertility except for the K increase with residues application. Tomato plants susceptible to M. incognita were planted in pots with 300 cm3 of the treated soils and kept for five weeks in a growth chamber (24 +/- 1 degrees C, 14 hours light), when root galling indices were evaluated. Most materials applied reduced root galling indices as regards to the control. In the greenhouse experiment, cabbage residues, cabbage residues+chicken manure, grass+chicken manure and grass+cabbage residues were applied to the soil and covered with a polyethylene sheet for 5 weeks. A cabbage residues:chicken manure treatment and a control (not-amended) treatment, without polyethylene, were also included. At the end of the experiment, the nematological analysis showed that all materials successfully controlled M. incognita populations, reaching 86-100% mortality with organic amendments vs. 6% for the control. After the greenhouse biodesinfestation experiment, a tomato crop was grown for one month, when root galling indices were determined. All materials significantly reduced this value from 4.75 in the control to 1.0-2.25 with the organic amendments, except for the cabbage residues+chicken manure treatment without polyethylene (index = 4.0). Our results show that fresh crop and garden residues successfully reduced M. incognita populations and root galling indices when applied with polyethylene covers, having good potential to be considered in integrated management programs.  相似文献   

2.
Broccoli (Brassica oleracea), carrot (Daucus carota), marigold (Tagetes patula), nematode-resistant tomato (Solanum lycopersicum), and strawberry (Fragaria ananassa) were grown for three years during the winter in a root-knot nematode (Meloidogyne incognita) infested field in Southern California. Each year in the spring, the tops of all crops were shredded and incorporated in the soil. Amendment with poultry litter was included as a sub-treatment. The soil was then covered with clear plastic for six weeks and M. incognita-susceptible tomato was grown during the summer season. Plastic tarping raised the average soil temperature at 13 cm depth by 7°C.The different winter-grown crops or the poultry litter did not affect M. incognita soil population levels. However, root galling on summer tomato was reduced by 36%, and tomato yields increased by 19% after incorporating broccoli compared to the fallow control. This crop also produced the highest amount of biomass of the five winter-grown crops. Over the three-year trial period, poultry litter increased tomato yields, but did not affect root galling caused by M. incognita. We conclude that cultivation followed by soil incorporation of broccoli reduced M. incognita damage to tomato. This effect is possibly due to delaying or preventing a portion of the nematodes to reach the host roots. We also observed that M. incognita populations did not increase under a host crop during the cool season when soil temperatures remained low (< 18°C).  相似文献   

3.
Physical, chemical, and biological factors of soil may reduce damage caused by plant-parasitic nematodes. Suppression of plant-parasitic nematodes is particularly challenging in soils in which there are short crop sequences, sequential susceptible host crops, or infestations of multiple nematode species. In southern Indiana, a watermelon production system involving rotations with soybean and corn does not suppress Meloidogyne incognita, but several aspects of such systems can be modified to reduce nematode damage in an integrated management approach. Cash crops with resistance to M. incognita can be used to reduce population densities of M. incognita. Small grains as cover crops can be replaced by cover crops with resistance to M. incognita or by crops with biofumigation potential. Mycorrhizal fungal inoculations of potting mixes during transplanting production of watermelon seedlings may improve early crop establishment. Other approaches to nematode management utilize soil suppressiveness. One-year rotations of soybean with corn neither reduced the soil-borne complex of sudden death syndrome (SDS) nor improved soybean root health over that in soybean monoculture. Reduced tillage combined with crop rotation may reduce the activity of soil-borne pathogens in some soils. For example in a long-term trial, numbers of Heterodera glycines and severity of foliar SDS symptoms were reduced under minimum tillage. Thus, sustainable management strategies require holistic approaches that consider entire production systems rather than focus on a single crop in its year of production.  相似文献   

4.
Four pepper genotypes classified as resistant and four pepper genotypes classified as susceptible to several avirulent populations of M. incognita were compared for their reactions against a population of Meloidogyne incognita (Chitwood) Kofoid and White which had been shown to be virulent to resistant bell pepper (Capsicum annuum) in preliminary tests. The virulent population of M. incognita originated from a commercial bell pepper field in California. The resistant pepper genotypes used in all experiments were the Capsicum annuum cultivars Charleston Belle, Carolina Wonder, and Carolina Cayenne, and the C. chinense cultigen PA-426. The susceptible pepper genotypes used in the experiments were the C. annuum cultivars Keystone Resistant Giant, Yolo Wonder B, California Wonder, and the C. chinense cultigen PA-350. Root gall indices (GI) were ≥ 3.0 for all genotypes in both tests except for PA-426 (GI=2.57) in test 1 and 'Carolina Cayenne' (GI=2.83) in test 2. Numbers of eggs per gram fresh root weight ranged from 20,635 to 141,319 and reproductive indices ranged from 1.20 to 27.2 for the pepper genotypes in both tests, indicating that all eight pepper genotypes tested were susceptible to the M. incognita population used in these tests. The M. incognita population used in these studies overcame resistance conferred by the N gene in all resistant genotypes of both C. annuum and C. chinense.  相似文献   

5.
The southern root-knot nematode (Meloidogyne incognita) is a major parasite of cotton in the U.S., and management tactics for this nematode attempt to minimize population levels. We compared three post-harvest practices for their ability to reduce nematode population levels in the field, thereby reducing initial nematode population for the next year's crop. The three practices tested were: 1) chemical defoliation before harvest plus cutting cotton stalks after harvest, 2) chemical defoliation plus applying a herbicide to kill plants prior to cutting the stalks, and 3) chemical defoliation without cutting stalks. Experiments were conducted in both the greenhouse and in the field. The greenhouse experiments demonstrated that M. incognita reproduction (measured as egg counts and root gall rating indices) was significantly greater when stalks were not cut. Cutting stalks plus applying herbicide to kill cotton roots did not significantly reduce nematode reproduction compared to cutting stalks alone. In field experiments, cutting stalks reduced egg populations and root galling compared to defoliation without stalk cutting. In a greenhouse bioassay which used soil from the field plots, plants grown in soil from the defoliation only treatment had greater root gall ratings and egg counts than in the stalk cutting plus herbicide treatment. Therefore, we conclude that cutting cotton stalks immediately after harvest effectively reduces M. incognita reproduction, and may lead to a lower initial population density of this nematode in the following year.  相似文献   

6.
In pot trial, dried ground weed leaves of Cynodon dactylon, Datura stramonium, Eichhomia crassipes, Emex spinosus, Ricinus communis and Sisymbrium irio were mixed with soil at the rate of 1, 3, 5 and 10 g/kg soil and compared their nematicidal potential with carbofuran as a standard against the root-knot nematode, M. incognita infecting tomato. In addition, their effects on growth rate of tomato plants were also investigated. The results showed that M. incognita populations in the soil and root galling were significantly suppressed when the dried leaves of the tested weeds at all rates were allowed to decompose in the soil. All amendments exhibited varying degree of reduction compared to control. The highest reduction was noticeable with the plants grown in Sisymbrium irio amended soil followed by Datura stramonium and Emex spinosus. In addition, employing high rate of the tested weeds gave higher activity in suppressing the nematode both in the soil and in tomato roots than using low rate. The data also indicated that all amendments at low rates significantly increased growth indices of tomato over control treatment, except Cynodon dactylon and Emex spinosus which decreased it, particularly in the shoot system. On the other hand, their high rates showed phytotoxic effects. These weed species may offer considerable promise as soil amendments for control of root-knot nematode, M. incognita.  相似文献   

7.
The nematicidal potential of culture filtrates of the blue-green alga, Microcoleus vaginatus (Cyanobacterium) was tested against Meloidogyne incognita on tomato in pots under greenhouse conditions. Prior to the transplantation of tomato seedling, roots were dipped in different concentrations (0.2%, 0.5%, 1%, 2%, 10%, 50% and 100%) of culture filtrate of M. vaginatus for 30 min. Root-dip treatment reduced the root galling and final population of M. incognita and increased vegetative growth of plants and root-mass production compared with the control. The beneficial effect of root-dip treatment increased with the increase in the concentration of culture filtrate. Root galling and final nematode populations were reduced by 65.9% and 97.5%, respectively when treated at the highest concentration.  相似文献   

8.
A series of experiments were conducted to evaluate the effect of oxamyl in combination with the soil fumigants 1,3-D, metam sodium and methyl bromide on nematode damage and fruit yield in vegetables. Experiments were conducted in Tifton, GA, USA over five seasons, between 2000 and 2002, using four different vegetables: squash (Cucurbita pepo), cucumber (Cucumis sativus), pepper (Capsicum annuum) and eggplant (Solanum melongend). In the eggplant experiment, insect populations were monitored. Soil fumigation alone, irrespective of application method or formulation, gave acceptable control of root-knot nematode in all experiments, except in the spring 2001 pepper experiment. Oxamyl by itself did not provide control of root-knot nematode (Meloidogyne incognita), but insect populations on eggplant were reduced. Out of three experiments that included oxamyl by itself, root galling caused by Meloidogyne spp. was reduced only on eggplant when nematode pressure was low (five nematodes per 150 cm3 soil). When oxamyl was applied in combination with pre-plant soil fumigation, small but consistent reductions in root galling were observed. Greatest reductions in galling due to oxamyl were found when fumigation provided less than optimal nematode control. The timing of application of oxamyl did not have much impact on nematode infection, but applications early in the season, preferably starting at planting, appear to be beneficial. Stubby root nematode (Paratrichodorus spp.) populations were low and variable in most experiments, but neither fumigation nor post-plant nematicide applications seemed to have any effect on soil populations at harvest. Crop yields were often significantly greater when oxamyl followed fumigation, as compared to fumigation only, which could be due to a reduction in root-knot nematode damage (and in the case of eggplant also reduced foliar damage by insects), and/or to a carbamate growth stimulant response. These experiments indicate the potential of oxamyl to reduce root-knot nematode infection and increase yields of vegetables when combined with soil fumigation by 1,3-D and/or metam sodium. More research is required to understand the effect of crop type, pest pressure, preceding fumigant (1,3-D or metam sodium) and injection timing of oxamyl.  相似文献   

9.
Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were ‘Bigbee’ berseem clover (Trifolium alexandrinum), ‘Paradana’ balansa clover (T. balansae), ‘AU Sunrise’ and ‘Dixie’ crimson clover (T. incarnatum), ‘Cherokee’ red clover (T. pratense), common and ‘AU Early Cover’ hairy vetch (Vicia villosa), ‘Cahaba White’ vetch (V. sativa), and ‘Wrens Abruzzi’ rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations compared to most vetches and clovers.  相似文献   

10.
Studies were made to determine the efficacy of Paecilomyces lilacinus in management of root-knot nematode (Meloidogyne incognita) in soil amended with various organic matters. The soil amendments with organic additives except gram and rice husks significantly reduced the multiplication of M. incognita and the root galling caused by root-knot nematode which consequently increased the plant growth. The greatest improvement in plant growth and reduced reproduction factor and root galling was recorded in soil amendment with leaves of Calotropis procera while the least was in kail saw dust. The best protection against M. incognita was observed on the integration of organic additives with P. lilacinus, which resulted increased plant growth and reduced population build-up of nematodes and root gallings. The leaves of C. procera with P. lilacinus were most effective than all other organic materials used among the different integrated approaches. The organic amendments also increased the parasitism of P. lilacinus on M. incognita.  相似文献   

11.
Meloidogyne incognita causes more damage to cotton in the US than any other pathogen. The objective of this study was to document the cumulative effect of moderate resistance on M. incognita population density, root galling, and yield suppression in the southern United States on a moderately resistant cotton genotype grown continuously for three years. Cotton genotypes were Phytogen PH98-3196 (77% suppression of M. incognita), Acala NemX (85% suppression of M. incognita), and Delta and Pine Land DP458 B/R (susceptible standard, 0% suppression). Cotton was grown in fumigated and non-fumigated plots to measure yield loss. Each genotype and nematicide combination was planted in the same place for three years at two sites to document cumulative effects. In 2006, following three years of the different genotypes, all plots at one site were planted with susceptible cotton to document residual effects of planting resistant genotypes. Root galling and nematode population densities in the soil were significantly lower, and percentage yield suppression was numerically lower, when moderately resistant cotton was grown compared to the susceptible standard in both fields in all three years. Differences between susceptible and moderately resistant genotypes are established quickly (after only one season) and then either maintained at similar levels or slightly increased in subsequent years depending on initial nematode levels. However, when susceptible cotton was grown following three years of the moderately resistant genotypes, the nematode suppression provided by moderate resistance was undetectable by the end of the first season. Moderately resistant cotton genotypes are more beneficial than previously reported and should be pursued for nematode management. Rotation of moderately resistant and susceptible cotton could be used along with nematicides to manage root-knot nematodes in a continuous cotton cropping system and reduce selection pressure on the nematodes.  相似文献   

12.
A field trial was conducted to examine whether strip-tilled cover cropping followed by living mulch practice could suppress root-knot nematode (Meloidogyne incognita) and enhance beneficial nematodes and other soil mesofauna, while suppressing weeds throughout two vegetable cropping seasons. Sunn hemp (SH), Crotalaria juncea, and French marigold (MG), Tagetes patula, were grown for three months, strip-tilled, and bitter melon (Momordica charantia) seedlings were transplanted into the tilled strips; the experiment was conducted twice (Season I and II). Strip-tilled cover cropping with SH prolonged M. incognita suppression in Season I but not in Season II where suppression was counteracted with enhanced crop growth. Sunn hemp also consistently enhanced bacterivorous and fungivorous nematode population densities prior to cash crop planting, prolonged enhancement of the Enrichment Index towards the end of both cash crop cycles, and increased numbers of soil mesoarthropods. Strip-tilled cover cropping of SH followed by clipping of the living mulch as surface mulch also reduced broadleaf weed populations up to 3 to 4 weeks after cash crop planting. However, SH failed to reduce soil disturbance as indicated by the Structure Index. Marigold suppressed M. incognita efficiently when planted immediately following a M. incognita-susceptible crop, but did not enhance beneficial soil mesofauna including free-living nematodes and soil mesoarthropods. Strip-tilled cover cropping of MG reduced broadleaf weed populations prior to cash crop planting in Season II, but this weed suppression did not last beyond the initial cash crop cycle.  相似文献   

13.
Root-knot nematode-susceptible melons (Cantaloupe) were grown in pots with varying levels of Meloidogyne incognita and were compared to susceptible melons that were grafted onto Cucumis metuliferus or Cucurbita moschata rootstocks. In addition, the effect of using melons as transplants in nematode-infested soil was compared to direct seeding of melons in nematode-infested soil. There were no differences in shoot or root weight, or severity of root galling between transplanted and direct-seeded non-grafted susceptible melon in nematode-infested soil. Susceptible melon grafted on C. moschata rootstocks had lower root gall ratings and, at high nematode densities, higher shoot weights than non-grafted susceptible melons. However, final nematode levels were not lower on the grafted than on the non-grafted plants, and it was therefore concluded that grafting susceptible melon on to C. moschata rootstock made the plants tolerant, but not resistant, to the nematodes. Grafting susceptible melons on C. metuliferus rootstocks also reduced levels of root galling, prevented shoot weight losses, and resulted in significantly lower nematode levels at harvest. Thus, C. metuliferus may be used as a rootstock for melon to prevent both growth reduction and a strong nematode buildup in M. incognita-infested soil.  相似文献   

14.
To determine the presence and level of root-knot nematode (Meloidogyne spp.) infestation in Southern California bell pepper (Capsicum annuum) fields, soil and root samples were collected in April and May 2012 and analyzed for the presence of root-knot nematodes. The earlier samples were virtually free of root-knot nematodes, but the later samples all contained, sometimes very high numbers, of root-knot nematodes. Nematodes were all identified as M. incognita. A nematode population from one of these fields was multiplied in a greenhouse and used as inoculum for two repeated pot experiments with three susceptible and two resistant bell pepper varieties. Fruit yields of the resistant peppers were not affected by the nematodes, whereas yields of two of the three susceptible pepper cultivars decreased as a result of nematode inoculation. Nematode-induced root galling and nematode multiplication was low but different between the two resistant cultivars. Root galling and nematode reproduction was much higher on the three susceptible cultivars. One of these susceptible cultivars exhibited tolerance, as yields were not affected by the nematodes, but nematode multiplication was high. It is concluded that M. incognita is common in Southern California bell pepper production, and that resistant cultivars may provide a useful tool in a nonchemical management strategy.  相似文献   

15.
Exposure of root-knot nematode, Meloidogyne incognita to various concentrations (5-100%) of culture filtrate of Paenibacillus polymyxa GBR-1 under in vitro conditions significantly reduced egg hatch and caused substantial mortality of its juveniles. The increase in the exposure durations of juveniles to culture filtrate and its concentrations increased the mortality rate. Similarly, higher concentrations increased its inhibitory effect on egg hatch. In higher concentrations (25-100%) egg hatch was inhibited by 84-91% after 2 days of exposures as compared to control in sterile distilled water. Application of various concentrations of culture filtrate extract or bacterial suspension of P. polymyxa GBR-1 into potting soil infested with 2000 J2 of M. incognita, reduced the root galling and nematode populations and increased tomato plant growth and root-mass production compared with untreated control (P< or = 0.05). The beneficial effect of P. polymyxa GBR-1 into potted soil increased exponentially with the increase in dose concentrations. Root gall index was reduced from 4.8 to 1.4 and 1.8 when potting soil was treated with 10% concentrations of culture filtrate extract and bacterial suspension, respectively, compared with untreated control. Application of bacterial suspension of P. polymyxa GBR-1 into potted soil at 3 day pre-inoculation of nematode was the most effective followed by simultaneously and at 2 days post-inoculation; as root galling was reduced by 62.5%, 58.3% and 50.0%, respectively, compared with untreated control.  相似文献   

16.
Pre-plant soil fumigation with methyl bromide and host resistance were compared for managing the southern root-knot nematode (Meloidogyne incognita) in pepper. Three pepper cultivars (Carolina Cayenne, Keystone Resistant Giant, and California Wonder) that differed in resistance to M. incognita were grown in field plots that had been fumigated with methyl bromide (98% CH₃Br : 2% CCl₃NO₂ [w/w]) before planting or left untreated. Carolina Cayenne is a well-adapted cayenne-type pepper that is highly resistant to M. incognita. The bell-type peppers Keystone Resistant Giant and California Wonder are intermediate to susceptible and susceptible, respectively. None of the cultivars exhibited root galling in the methyl bromide fumigated plots and nematode reproduction was minimal (<250 eggs/g fresh root), indicating that the fumigation treatment was highly effective in controlling M. incognita. Root galling of Carolina Cayenne and nematode reproduction were minimal, and fruit yields were not reduced in the untreated plots. The root-galling reaction for Keystone Resistant Giant was intermediate (gall index = 2.9, on a scale of 1 to 5), and nematode reproduction was moderately high. However, yields of Keystone Resistant Giant were not reduced in untreated plots. Root galling was severe (gall index = 4.3) on susceptible California Wonder, nematode reproduction was high, and fruit yields were reduced (P ≤ 0.05) in untreated plots. The resistance exhibited by Carolina Cayenne and Keystone Resistant Giant provides an alternative to methyl bromide for reducing yield losses by southern root-knot nematodes in pepper. The high level of resistance of Carolina Cayenne also suppresses population densities of M. incognita.  相似文献   

17.
Soil biofumigation with brassica plant residues has been shown to significantly suppress soilborne pathogen. However, little published data reported the impact of biofumigation on microbial community structure in pepper (Capsicum annuum L.) production systems under field conditions. Biofumigation with rapeseed (Brassica napus ‘Dwarf Essex’) meal and chemical fumigation with dazomet were tested to control the pepper disease caused by Phytophthora capsici. BF treatment showed the lowest disease incidence among these treatments. Effects on soil bacterial and fungal communities were assessed by denaturating gradient gel electrophoresis and the results showed that the biofumigation increased bacterial diversity and decreased fungal diversity. There was a negative correlation between soil bacterial diversity and disease incidence and a positive correlation between soil fungal diversity and disease incidence. Cloning of the microbial community showed that the microbial community structures were altered by biofumigation. Soil was also evaluated for their chemical properties. Biofumigation increased soil content of total N, NO3 ?–N, available P and available K. A significant correlation between soil microbial community structures and soil chemical properties was found. Overall, these results indicated that biofumigation reduced disease incidence of pepper through altering soil microbial community structures.  相似文献   

18.
Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber.  相似文献   

19.
Glasshouse experiments were conducted to assess the influence of Pseudomonas fluorescens, Azotobacter chroococcum, Azospirillum brasilense and composted organic fertilizers (cow dung, horse dung, goat dung and poultry manure) alone and in combination on the multiplication of Meloidogyne incognita and growth of tomato. P. fluorescens was better at improving tomato growth and reducing galling and nematode multiplication than A. chroococcum or A. brasilense. Among composted organic fertilizers, poultry manure resulted in less galling and nematode multiplication than occurred with goat dung. However, composted goat dung was better in reducing nematode multiplication and improving plant growth than horse dung. Cow dung was the composted organic fertilizer least effective in reducing galling and nematode multiplication. Poultry manure with P. fluorescens was the best combination for the management of M. incognita on tomato but improved management of M. incognita can also be obtained if goat dung is used with P. fluorescens or poultry manure with A. chroococcum.  相似文献   

20.
Meals produced when oil is extracted from seeds in the Brassicaceae have been shown to suppress weeds and soilborne pathogens. These seed meals are commonly used individually as soil amendments; the goal of this research was to evaluate seed meal mixes of Brassica juncea (Bj) and Sinapis alba (Sa) against Meloidogyne incognita. Seed meals from Bj 'Pacific Gold' and Sa 'IdaGold' were tested alone and in combinations to determine rates and application times that would suppress M. incognita on pepper (Capsicum annuum) without phytotoxicity. Rates of soil application (% w/w) for the phytotoxicity study were: 0.5 Sa, 0.2 Bj, 0.25 Sa + 0.25 Bj, 0.375 Sa + 0.125 Bj, 0.125 Sa + 0.375 Bj, and 0, applied 0 - 5 weeks before transplant. Overall, 0.2% Bj was the least toxic meal to pepper seedlings. By comparison, 0.5% S. alba seed meal did not reduce lettuce (Lactuca sativa) seed germination at week 0, but all seed meal treatments containing B. juncea prevented or significantly reduced germination at week 0. The seed meals did not affect lettuce seed germination at weeks 1-5, but hypocotyl growth was reduced by all except 0.2% Bj at weeks 1, 4 and 5. Brassica juncea and Sa meals were tested for M. incognita suppression at 0.2, 0.15, 0.1 and 0.05%; mixtures were 0.1% Sa + 0.1% Bj, 0.15% Sa + 0.05% Bj, and 0.05% Sa + 0.15% Bj. All treatments were applied 2 weeks before transplant. The 0.2% Bj and 0.05% Sa + 0.15% Bj treatments overall had the longest shoots and highest fresh weights. Eggs per g root were lowest with 0.1 - 0.2% Bj amendments and the seed meal mixtures. The results indicate that Bj and some Bj + Sa mixtures can be applied close to transplant to suppress M. incognita populations on pepper; consequently, a seed meal mixture could be selected to provide activity against more than one pest or pathogen. For pepper, care should be taken in formulating mixtures so that Sa rates are low compared to Bj.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号