首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Gluconeogenesis and ketogenesis were studied in isolated hepatocytes obtained from normal and alloxan diabetic rats. Insulin treatment maintained near-normal blood glucose levels and caused an increase in glycogen deposition. The third day after insulin withdrawal the rats displayed a diabetic syndrome marked by progressive hyperglycemia and glycogen depletion. Net glucose production in liver cells isolated from alloxan diabetic rats progressively increased with time up to 72 hr after the last in vivo insulin injection. Maximal glucose production was observed at 72 hr with 10 mM alanine, lactate, pyruvate, or fructose. Glucose production decreased at 96 hr. The same pattern was observed with the incorporation of labeled bicarbonate into glucose. Ketogenesis in liver cells and hepatic lipid content also peaked at 72 hr.  相似文献   

3.
The amount and distribution of glycogen as well as the activity of glucose-6-phosphatase (G-6-Pase) in the livers of rats were analyzed by biochemical and/or histochemical techniques. During the first 5 hr of the light cycle, livers of rats were sampled prior to and 30 min following an injection of compound 48/80 or Ringer's solution. Glycogen decreased significantly in response to sampling; however, treatment with compound 48/80 provoked an additional significant decrease in hepatic glycogen. These differences occurred irrespective of the time during the 5 hr that this was studied. The livers of the majority of the rats treated with compound 48/80 displayed a periportal distribution of glycogen, while those treated with Ringer's showed a more uniform pattern. Hepatic G-6-Pase activity was unchanged in either the Ringer's or compound 48/80 treated rats. These results indicated that (1) the significant glycogenolytic response occurs independently of the amount of glycogen present, (2) G-6-Pase activity is not affected within 30 min following the stimulation of glycogenolysis, (3) variation in glycogen patterns during depletion depends on the nature of the stimulus and/or degree of response, and (4) the amount of glycogen available for release is limited.  相似文献   

4.
Control of glycogen levels in brain   总被引:12,自引:5,他引:7  
Abstract— Prolonged (6 hr) anaesthesia with phenobarbital in mice or rats results in a doubling or tripling of brain glycogen. Increases were also observed if high levels of plasma glucose were maintained for 6 hr. In alloxan diabetes brain glycogen was not elevated in spite of the high plasma glucose concentrations. However, administration of insulin to such diabetic animals, together with enough glucose to maintain high plasma levels, resulted in at least a doubling of brain glycogen in 6 hr. Phenobarbital can still increase brain glycogen in diabetic animals. In all of the conditions associated with increased glycogen deposition, increases were found in the ratio of brain glucose to plasma glucose. Cerebral glucose-6-P levels were also increased whereas there were no substantial changes in levels of UDP-glucose or glucose-1,6-diphosphate.  相似文献   

5.
The role of endogenous glucagon and insulin on the hepatic glycogen and triglyceride storage syndrome in propylthiouracil (PTU)-induced hypothyroidism was investigated in the chick. PTU feeding in the diet resulted in a progressive increase in liver glycogen concentration associated with a concomitant decrease in hepatic glucose-6-phosphatase (G-6-Pase) activity. Plasma glucagon level was significantly decreased and insulin significantly increased after two days of PTU administration. These enzyme and hormone changes were associated with a significant increase in hepatic glucose-6-phosphate (G-6-P) and a decrease in cyclic AMP levels. Although our results do not directly prove, the data does suggest that the hepatic glycogen storage syndrome observed in the PTU-induced hypothyroidism in the chick is mediated through changes in pancreatic glucagon and insulin secretion. The extent of glycogen accumulation was inversely related to G-6-Pase which is a rate limiting glycogenolytic enzyme. A significant increase in the plasma insulin/glucagon ratio, along with a significant decrease in the hepatic cyclic AMP concentration, could most likely also account for the excessive hepatic triglyceride accumulation in the PTU-treated chicks.  相似文献   

6.
The present investigation was undertaken to characterize the direct inhibitory action of the peroxyvanadium compounds oxodiperoxo(1, 10-phenanthroline) vanadate(V) (bpV(phen)) and oxodiperoxo(pyridine-2-carboxylate) vanadate(V) (bpV(pic)) on pig microsomal glucose-6-phosphatase (G-6-Pase) activity and on glucagon stimulated hyperglycemia in vivo. Both bpV(phen) and bpV(pic) were found to be potent competitive inhibitors of G-6-Pase with Ki values of 0.96 and 0.42 microM (intact microsomes) and 0.50 and 0.21 microM (detergent-disrupted microsomes). The corresponding values for ortho-vanadate were 20.3 and 20.0 microM. Administration of bpV(phen) to postprandial rats did not affect the basal glucose level although a modest and dose-dependent increase in plasma lactate levels was seen. Injection of glucagon raised the plasma glucose level from 5.5 mM to about 7.5 mM in control animals and this increase could be prevented dose-dependently by bpV(phen). The inhibition of the glucagon-mediated blood glucose increase was accompanied by a dose-dependent increase in plasma lactate levels from 2 mM to about 11 mM. In conclusion, the finding that vanadate and bpV compounds are potent inhibitors of G-6-Pase suggests that the blood-glucose-lowering effect of these compounds which is seen in diabetic animals may be partly explained by a direct effect on this enzyme rather than, as presently thought, being the result of inhibition of phosphoprotein tyrosine phosphatases and thereby insulin receptor dephosphorylation.  相似文献   

7.
We investigated the antihyperglycemic effect of p-methoxycinnamic acid (p-MCA), a cinnamic acid derivative, on plasma glucose and insulin concentrations, activities of hepatic glucose-regulating enzymes and hepatic glycogen content in normal and streptozotocin (STZ)-induced diabetic rats. p-MCA (10-100 mg/kg, PO) dose-dependently decreased plasma glucose concentration in both normal and diabetic rats in the oral glucose tolerance test. To investigate the chronic effects of p-MCA on glucose metabolism, p-MCA (40 mg/kg, PO) was administered to normal and diabetic rats once a day for 4 weeks. p-MCA reduced plasma glucose concentration in diabetic rats, which was observed during the 4-week study. However, p-MCA treatment did not change plasma glucose concentrations in normal rats during the 4-week study. p-MCA also reduced the excessive activities of hepatic glucose-6-phosphatase, hepatic hexokinase, glucokinase and phosphofructokinase in diabetic rats and increased hepatic glycogen in these rats. In p-MCA-treated normal rats, there were no changes in the activities of hepatic glucose-regulating enzymes, hepatic glycogen and glucose-6-phosphate. Our findings suggested that p-MCA exert its antihyperglycemic effect by increasing insulin secretion and glycolysis, and by decreasing gluconeogenesis.  相似文献   

8.
It has been suggested that the increased activity of the sympathetic nervous system and the resultant increase in the tissue catecholamine levels contribute to the pathogenesis of diabetes. In this study we evaluated the effect of clonidine, a central adrenergic agonist that decreases sympathetic tone, on the serum levels of glucose, insulin, glucagon and norepinephrine and on the hepatic glycogen content in normal and streptozotocin-diabetic rats. The animals were treated with clonidine 25 micrograms/kg/day interperitoneally for 3 weeks to suppress the central adrenergic impulses. Clonidine treatment significantly increased the weight gain, but did not affect plasma glucose, insulin, glucagon and norepinephrine in the diabetic animals. Pancreatic insulin and liver glycogen contents were significantly higher in the clonidine-treated than in the untreated diabetic rats. However, clonidine did not affect pancreatic insulin and liver glycogen content of nondiabetic animals. The intravenous administration of glucagon increased plasma glucose in the clonidine-treated, but not in the saline-treated diabetic rats. Insulin-induced hypoglycemia significantly enhanced glucagon release in clonidine-treated but not in saline-treated diabetic rats. We conclude that the suppression of central adrenergic activity may ameliorate the effects of insulin insufficiency on pancreatic hormone secretion and hepatic glycogen content.  相似文献   

9.
Increased plasma free fatty acid (FFA) level is a hallmark of type 2 diabetes. However, the underlying molecular basis for FFA-caused hyperglycemia remains unclear. Here we identified plasma 5'-adenosine monophosphate (pAMP) markedly elevated in the plasma of type 2 diabetic mice. High levels of FFAs induced damage in vein endothelial cells and contributed to an increase in pAMP. Administration of synthetic 5'-AMP caused hyperglycemia and impaired insulin action in lean wild-type mice. 5'-AMP elevated blood glucose in mice deficient in adenosine receptors with equal efficiency as wild-type mice. The function of pAMP was initiated by the elevation of cellular adenosine levels, directly stimulating G-6-Pase enzyme activity, attenuating insulin-dependent GLUT4 translocation in skeletal muscle, and displaying a rapid and steep increase in blood glucose and a decrease in hepatic glycogen level. It was followed by an increase in the gene expression of hepatic Foxo1 and its targeting gene Pepck and G6Pase, which was similar to diabetic phenotype in db/db mice. Our results suggest that pAMP is a potential upstream regulator of hyperglycemia in type 2 diabetes.  相似文献   

10.
R N Margolis 《Life sciences》1987,41(24):2615-2622
The chronically hyperinsulinemic Zucker fatty rat, with peripheral insulin resistance and glucose intolerance, represents a model of noninsulin dependent diabetes mellitus (NIDDM). These animals have elevated hepatic glycogen levels. Hepatic levels of synthase phosphatase and phosphorylase phosphatase, which are diminished in the IDDM rat, were markedly increased in the obese rats. Glyburide, a sulfonylurea used in treatment of NIDDM, resulted in reduced levels of glycemia and increased insulin levels in Zucker rats. Hepatic glycogen levels were increased, as was the activation of glycogen synthase, although there were no effects of drug administration on synthase phosphatase or phosphorylase phosphatase activities. G6P levels were increased by glyburide in lean rats but not in obese animals. These effects of glyburide on liver glycogen metabolism are accounted for via potentiation of the glycogenic effects of insulin.  相似文献   

11.
Fetal exposure to synthetic glucocorticoids in sheep results in increased fetal hepatic 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) and corticosteroid-binding globulin (CBG) protein levels and insulin resistance in postnatal life. The aim was to determine whether these changes persisted to adulthood and whether alterations in mediators of hepatic glucocorticoid and glucose regulation contributed to changes in metabolism. Pregnant ewes or their fetuses received either repeated intramuscular saline (MS, FS) or betamethasone injections (0.5 mg/kg; M4, F4) at 104, 111, 118, and 124 days of gestation (dG), or a single betamethasone injection at 104 dG followed by saline at 111, 118, and 124 dG (M1, F1). Offspring were catheterized at 2 and 3 yr of age and given an intravenous glucose challenge (0.5 mg/kg). Hepatic tissue was collected at 3.5 yr. At 2 yr of age, basal plasma insulin was elevated in M4 offspring and at 3 yr of age was elevated in F4 offspring. Basal insulin-to-glucose ratio was significantly elevated in M4 offspring at 2 yr of age and elevated in M1, M4, and F4 offspring at 3 yr of age. All betamethasone treatments resulted in significant increases in hepatic glucose-6-phosphatase (G-6-Pase) activity. Hepatic glucocorticoid receptor protein levels were not altered in M1 and M4 offspring but were increased in F1 and F4 offspring. Hepatic CBG protein levels were lower in F4 but not F1 offspring and were unchanged from control in M1 and M4 offspring. Prenatal betamethasone exposure results in elevated hepatic G-6-Pase activity in adulthood and may contribute to long-term changes in metabolism.  相似文献   

12.
Administration of L-thyroxine (T4) to thyroidectomized Calotes versicolor significantly increased the activity of glucose-6-phosphatase (G-6-Pase) (liver and kidney), the concentrations of blood glucose and total protein (liver and kidney), and decreased hepatic cholesterol when compared to thyroidectomized lizards. Propranolol injections in thyroidectomized lizards increased the cholesterol concentration and did not change the other parameters. The activity of G-6-Pase and blood glucose content was stimulated, whereas the total protein and cholesterol contents were decreased after alloxan treatment. Administration of T4 to thyroidectomized animals pretreated with propranolol or alloxan significantly elevated the activity of G-6-Pase, the concentrations of blood glucose, and total protein, and reduced hepatic cholesterol level when compared to drug-treated lizards. From the results, it is evident that thyroid hormone has an independent stimulatory influence on intermediary metabolism in C. versicolor irrespective of the involvement of adrenaline or insulin.  相似文献   

13.
Summary Liver glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenase activities were significantly decreased in both diabetic and fasted rats. Treatment of diabetic rats with insulin resulted in liver glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenase activities that were significantly greater than controls. Insulin promoted an increase in food consumption that was blocked by adrenaline. Insulin, when administered together with adrenaline, restored hepatic glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenas activities of diabetic animals to control values, without altering food consumption. Brain glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenase activities were not significantly altered by either dietary restriction, diabetes or insulin treatment. These results demonstrate a dissociation between the action of insulin on hepatic glucose 6-phosphate dehydrogenase activity and its action to increase food intake.Abbreviations NADP+ oxidoreductase, EC 1.1.1.49 Glucose 6-P dehydrogenase, GPD, D-glucose-6-phosphate - NADP+ 2-oxidoreductase (decarboxylating), EC 1.1.1.44 phosphogluconate dehydrogenase, PGD, 6-phospho-D-gluconate  相似文献   

14.
Summary

Hepatic glucose-6-phosphatase (G-6-Pase) catalyses the terminal step of hepatic glucose production and it plays a key role in the maintenance of blood glucose homeostasis. Hepatic G-6-Pase is an integral resident endoplasmic reticulum (ER) protein and it is part of a multicomponent system. Its active site is situated inside the lumen of the ER and transport proteins are needed to allow its substrates, glucose-6-phosphate (G-6-P) (and pyrophosphate), and its products, phosphate and glucose, to cross the ER membrane. In addition, a calcium-binding protein is also associated with the G-6-Pase enzyme. Recent immunological studies have shown that G-6-Pase (which has conventionally been thought to be present only in the gluconeogenic organs) is present in minor cell types in a variety of human tissues and that its distribution changes dramatically during human development. In all the tissues, enzymatic analysis, direct transport assays and/or immunological detection of the ER glucose and phosphate transport proteins have been used to demonstrate the presence and activity of the whole G-6-Pase system. The G-6-Pase protein is very hydrophobic and has proved difficult to purify to homogeneity. Four proteins of the system have now been isolated and polyclonal antibodies have been raised against them; two have also been cloned. The available sequences, together with topologicai studies, have given some information about both the topology of the proteins in the ER and the probable mechanisms by which the proteins are retained in the ER.  相似文献   

15.
Intensively treating type I diabetics with continuous subcutaneous insulin infusions or multiple daily insulin injections to normalize mean blood glucose concentrations significantly reduces the onset of secondary diabetic complications when compared to conventionally treated diabetics. Our studies focused on characterizing hepatic enzyme expression in intensively and conventionally treated diabetic rats. Alloxan-induced diabetic rats were conventionally treated with insulin injected twice daily or intensively treated with similar daily dosages of insulin administered via a surgically implanted osmotic pump. Our results demonstrate a significant difference in hepatic enzyme expression when these treatment regimes are compared. In conventionally treated diabetic rats, phosphoenolpyruvate carboxykinase (PEPCK) protein and mRNA levels remained slightly elevated when compared to normal animals, glycogen phosphorylase (GP) protein levels were still slightly decreased, and glycogen synthase (GS) protein and mRNA levels remained at the elevated levels observed in untreated diabetics. In contrast, the protein and mRNA levels of all three enzymes were normalized in the insulin pump-treated animals. These results suggest that intensive insulin therapy improves glycemia directly by normalizing hepatic gene expression while conventional insulin therapy normalizes plasma glucose concentrations indirectly.  相似文献   

16.
The regulation of glucose-6-phosphatase (G-6-Pase) catalytic subunit and glucose 6-phosphate (G-6-P) transporter gene expression by insulin in conscious dogs in vivo and in tissue culture cells in situ were compared. In pancreatic-clamped, euglycemic conscious dogs, a 5-h period of hypoinsulinemia led to a marked increase in hepatic G-6-Pase catalytic subunit mRNA; however, G-6-P transporter mRNA was unchanged. In contrast, a 5-h period of hyperinsulinemia resulted in a suppression of both G-6-Pase catalytic subunit and G-6-P transporter gene expression. Similarly, insulin suppressed G-6-Pase catalytic subunit and G-6-P transporter gene expression in H4IIE hepatoma cells. However, the magnitude of the insulin effect was much greater on G-6-Pase catalytic subunit gene expression and was manifested more rapidly. Furthermore, cAMP stimulated G-6-Pase catalytic subunit expression in H4IIE cells and in primary hepatocytes but had no effect on G-6-P transporter expression. These results suggest that the relative control strengths of the G-6-Pase catalytic subunit and G-6-P transporter in the G-6-Pase reaction are likely to vary depending on the in vivo environment.  相似文献   

17.
1. Concentrations of polyamines, amino acids, glycogen, nucleic acids and protein, and activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, were measured in livers from control, streptozotocin-diabetic and insulin-treated diabetic rats. 2. Total DNA per liver and protein per mg of DNA were unaffected by diabetes, whereas RNA per mg of DNA and glycogen per g of liver were decreased. Insulin treatment of diabetic rats induced both hypertrophy and hyperplasia, as indicated by an increase in all four of these constituents to or above control values. 3. Spermidine content was increased in the livers of diabetic rats, despite the decrease in RNA, but it was further increased by insulin treatment. Spermine content was decreased by diabetes, but was unchanged by insulin treatment. Thus the ratio spermidine/spermine in the adult diabetic rat was more typical of that seen in younger rats, whereas insulin treatment resulted in a ratio similar to that seen in rapidly growing tissues. 4. Ornithine decarboxylase activity was variable in the diabetic rat, showing a positive correlation with endogenous ornithine concentrations. This correlation was not seen in control or insulin-treated rats. Insulin caused a significant increase in ornithine decarboxylase activity relative to control or diabetic rats. 5. S-Adenosylmethionine decarboxylase activity was increased approx. 2-fold by diabetes and was not further affected by insulin. 6. Hepatic concentrations of the glucogenic amino acids, alanine, glutamine and glycine were decreased by diabetes. Their concentrations and that of glutamate were increased by injection of insulin. Concentrations of ornithine, proline, leucine, isoleucine and valine were increased in livers of diabetic rats and were decreased by insulin. Diabetes caused a decrease in hepatic concentration of serine, threonine, lysine and histidine. Insulin had no effect on serine, lysine and histidine, but caused a further fall in the concentration of threonine.  相似文献   

18.
Insulin rapidly produced an increase in per cent of total heart glycogen synthase in the I form in fed rats. In fasted rats the response was diminished and delayed. In diabetic animals there was no response over the 15-min time period studied. Since synthase phosphatase activity is necessary for synthase D to I conversion, the phosphatase activity was determined in extracts from these groups of animals. In the fasted and diabetic rats phosphatase activity was less than one-half of that in fed animals. Administration of insulin to fasting animals increased synthase phosphatase activity to a level approaching that of fed animals by 15 min. In diabetic animals insulin also stimulated an increase in synthase phosphatase activity but 30 min were required for full activation. Insulin had no effect in normal fed animals. Insulin activation of synthase phosphatase activity in heart extracts from fasted animals was still present after Sephadex G-25 chromatography and ammonium sulfate precipitation. Thus insulin had induced a stable modification of the phosphatase itself or of its substrate synthase D rendering the latter a more favorable substrate for the reaction. A difference in sensitivity of the reaction to glycogen inhibition was present between fed and fasted animals. Increasing concentrations of glycogen had only a slight inhibitory effect in extracts from fed animals but considerably reduced activity in extracts from fasted animals. Insulin administration reduced the sensitivity of the phosphatase reaction to glycogen inhibition. This could explain, at least in part, the increased phosphatase activity noted in the insulin-treated, fasted rats since glycogen was routinely added to the homogenizing buffer.  相似文献   

19.
The development of the endoplasmic reticulum (ER) and the ultrastructural localization of glucose-6-phosphatase activity have been studied in the proximal jejunum and distal ileum during the postnatal period. One day after birth, the amount and the repartition of ER in the jejunal enterocytes are similar to that observed in postweaning period. In the following days an extensive proliferation of SER is noted in the supranuclear zone of the absorbing cells. From day 7 till postweaning period a gradual decrease of the amount of SER is observed and after weaning, the ultrastructure of the enterocytes is similar to that in the adult mouse enterocytes. At all time, a positive reaction for G-6-Pase activity is observed in the cisternae of the endoplasmic reticulum and in the nuclear envelope. In the distal ileum, the SER is poorly developed one day after birth. During the first two weeks, the ER increases but no extensive proliferation of SER can be noted as in the jejunum. The G-6-Pase activity can be visualized in the rough and smooth endoplasmic reticulum as well as in the nuclear envelope. It appears that the proliferation of SER could be interpreted as the morphologic expression of an increased G-6-Pase activity.  相似文献   

20.
This study was conducted to test the hypothesis of the activation of glucose-6-phosphatase (G-6-Pase) in situations where the liver is supposed to sustain high glucose supply, such as during the counterregulatory response to hypoglycemia. Hypoglycemia was induced by insulin infusion in anesthetized rats. Despite hyperinsulinemia, endogenous glucose production (EGP), assessed by [3-(3)H]glucose tracer dilution, was paradoxically not suppressed in hypoglycemic rats. G-6-Pase activity, assayed in a freeze-clamped liver lobe, was increased by 30% in hypoglycemia (P < 0.01 vs. saline-infused controls). Infusion of epinephrine (1 microg x kg(-1) x min(-1)) in normal rats induced a dramatic 80% increase in EGP and a 60% increase in G-6-Pase activity. In contrast, infusion of dexamethasone had no effect on these parameters. Similar insulin-induced hypoglycemia experiments performed in adrenalectomized rats did not induce any stimulation of G-6-Pase. Infusion of epinephrine in adrenalectomized rats restored a stimulation of G-6-Pase similar to that triggered by hypoglycemia in normal rats. These results strongly suggest that specific activatory mechanisms of G-6-Pase take place and contribute to EGP in situations where the latter is supposed to be sustained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号