首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aldolases are a specific group of lyases that catalyze the reversible stereoselective addition of a donor compound (nucleophile) onto an acceptor compound (electrophile). Whereas most aldolases are specific for their donor compound in the aldolization reaction, they often tolerate a wide range of aldehydes as acceptor compounds. C–C bonding by aldolases creates stereocenters in the resulting aldol products. This makes aldolases interesting tools for asymmetric syntheses of rare sugars or sugar-derived compounds as iminocyclitols, statins, epothilones, and sialic acids. Besides the well-known fructose 1,6-bisphosphate aldolase, other aldolases of microbial origin have attracted the interest of synthetic bio-organic chemists in recent years. These are either other dihydroxyacetone phosphate aldolases or aldolases depending on pyruvate/phosphoenolpyruvate, glycine, or acetaldehyde as donor substrate. Recently, an aldolase that accepts dihydroxyacetone or hydroxyacetone as a donor was described. A further enlargement of the arsenal of available chemoenzymatic tools can be achieved through screening for novel aldolase activities and directed evolution of existing aldolases to alter their substrate- or stereospecifities. We give an update of work on aldolases, with an emphasis on microbial aldolases.  相似文献   

2.
Sulfolobus acidocaldarius 2-keto-3-deoxygluconate aldolase (SacKdgA) displays optimal activity at 95 °C and is studied as a model enzyme for aldol condensation reactions. For application of SacKdgA at lower temperatures, a library of randomly generated mutants was screened for improved synthesis of 2-keto-3-deoxygluconate from pyruvate and glyceraldehyde at the suboptimal temperature of 50 °C. The single mutant SacKdgA-V193A displayed a threefold increase in activity compared with wild type SacKdgA. The increased specific activity at 40–60 °C of this mutant was observed, not only for the condensation of pyruvate with glyceraldehyde, but also for several unnatural acceptor aldehydes. The optimal temperature for activity of SacKdgA-V193A was lower than for the wild type enzyme, but enzymatic stability of the mutant was similar to that of the wild type, indicating that activity and stability were uncoupled. Valine193 has Van der Waals interactions with Lysine153, which covalently binds the substrate during catalysis. The mutation V193A introduced space close to this essential residue, and the increased activity of the mutant presumably resulted from increased flexibility of Lysine153. The increased activity of SacKdgA-V193A with unaffected stability demonstrates the potential for optimizing extremely thermostable aldolases for synthesis reactions at moderate temperatures.  相似文献   

3.
1. The route of l-threonine degradation was studied in four strains of the genus Pseudomonas able to grow on the amino acid and selected because of their high l-threonine aldolase activity. Growth and manometric results were consistent with the cleavage of l-threonine to acetaldehyde+glycine and their metabolism via acetate and serine respectively. 2. l-Threonine aldolases in these bacteria exhibited pH optima in the range 8.0–8.7 and Km values for the substrate of 5–10mm. Extracts exhibited comparable allo-l-threonine aldolase activities, Km values for this substrate being 14.5–38.5mm depending on the bacterium. Both activities were essentially constitutive. Similar activity ratios in extracts, independent of growth conditions, suggested a single enzyme. The isolate Pseudomonas D2 (N.C.I.B. 11097) represents the best source of the enzyme known. 3. Extracts of all the l-threonine-grown pseudomonads also possessed a CoA-independent aldehyde dehydrogenase, the synthesis of which was induced, and a reversible alcohol dehydrogenase. The high acetaldehyde reductase activity of most extracts possibly resulted in the underestimation of acetaldehyde dehydrogenase. 4. l-Serine dehydratase formation was induced by growth on l-threonine or acetate+glycine. Constitutively synthesized l-serine hydroxymethyltransferase was detected in extracts of Pseudomonas strains D2 and F10. The enzyme could not be detected in strains A1 and N3, probably because of a highly active `formaldehyde-utilizing' system. 5. Ion-exchange and molecular exclusion chromatography supported other evidence that l-threonine aldolase and allo-l-threonine aldolase activities were catalysed by the same enzyme but that l-serine hydroxymethyltransferase was distinct and different. These results contrast with the specificities of some analogous enzymes of mammalian origin.  相似文献   

4.
Immunochemical studies using polyclonal antisera prepared individually against highly purified cytosolic and chloroplast spinach leaf (Spinacia oleracea) fructose bisphosphate aldolases showed significant cross reaction between both forms of spinach aldolase and their heterologous antisera. The individual cross reactions were estimated to be approximately 50% in both cases under conditions of antibody saturation using a highly sensitive enzyme-linked immunosorbent assay. In contrast, the class I procaryotic aldolase from Mycobacterium smegmatis and the class II aldolase from yeast (Saccharomyces cerevisiae) did not cross-react with either type of antiserum. The 29 residue long amino-terminal amino acid sequences of the procaryotic M. smegmatis and the spinach chloroplast aldolases were determined. Comparisons of these sequences with those of other aldolases showed that the amino-terminal primary structure of the chloroplast aldolase is much more similar to the amino-terminal structures of class I cytosolic eucaryotic aldolases than it is to the corresponding region of the M. smegmatis enzyme, especially in that region which forms the first “beta sheet” in the secondary structure of the eucaryotic aldolases. Moreover, results of a systematic comparison of the amino acid compositions of a number of diverse eucaryotic and procaryotic fructose bisphosphate aldolases further suggest that the chloroplast aldolase belongs to the eucaryotic rather than the procaryotic “family” of class I aldolases.  相似文献   

5.
Two Class I Aldolases in the Green Alga Chara foetida (Charophyceae)   总被引:1,自引:0,他引:1  
Aldolase activity of Chara foetida (Braun) could be separated into a minor (peak I) and a major peak (peak II) by ion-exchange chromatography on DEAE-cellulose. Affinity chromatography on P-cellulose resulted in highly purified aldolase preparations with specific activities of 3.2 and 4.8 units per milligram protein and molecular subunit masses of 37 and 35 kilodalton, as shown by SDS-PAGE, for the aldolase of peak I and peak II, respectively. Both aldolases belong to class I aldolase since the activity is not inhibited by 1 millimolar EDTA. The Km (fructose-1,6-bisphosphate) values were 0.64 and 13.4 micromolar, respectively. The aldolase of peak I showed a 6.7 times stronger crossreaction with a specific antiserum against the cytosol aldolase of spinach than with an antiserum against the chloroplast aldolase of spinach. On the other hand the aldolase of peak II showed a 5.1 times stronger cross-reaction with the α-plastidaldolase antiserum than with the α-cytosol-aldolase antiserum. For algae this is the first separation of two class I aldolases. They are similar to the cytosol and chloroplast aldolases in higher plants, but different from a reported class I (Me2+ independent) and class II (Me2+ dependent) aldolase in other algae.  相似文献   

6.
A coupled enzymatic assay was developed for quantitative determination of the stereoisomeric products formed in aldol reactions catalyzed by dihydroxyacetone phosphate (DHAP)-dependent aldolases. Three of the four stereoisomers could be determined directly; the fourth one was calculated. This procedure is based on the reversibility of the aldol reaction and requires no derivatization or work-up of the product samples, only removal or inactivation of the biocatalyst. In comparison with other methods the enzymatic assay is highly accurate and fast. Determination of isomer formation with 10 different acceptor substrates applying this procedure gave unprecedented insight in the stereochemistry of fructose-1,6-bisphosphate aldolase from Staphylococcus carnosus and l-rhamnulose-1-phosphate aldolase from E. coli.  相似文献   

7.
Stereoselective carbon–carbon bond formation with aldolases has become an indispensable tool in preparative synthetic chemistry. In particular, the dihydroxyacetone phosphate (DHAP)-dependent aldolases are attractive because four different types are available that allow access to a complete set of diastereomers of vicinal diols from achiral aldehyde acceptors and the DHAP donor substrate. While the substrate specificity for the acceptor is rather relaxed, these enzymes show only very limited tolerance for substituting the donor. Therefore, access to DHAP is instrumental for the preparative exploitation of these enzymes, and several routes for its synthesis have become available. DHAP is unstable, so chemical synthetic routes have concentrated on producing a storable precursor that can easily be converted to DHAP immediately before its use. Enzymatic routes have concentrated on integrating the DHAP formation with upstream or downstream catalytic steps, leading to multi-enzyme arrangements with up to seven enzymes operating simultaneously. While the various chemical routes suffer from either low yields, complicated work-up, or toxic reagents or catalysts, the enzymatic routes suffer from complex product mixtures and the need to assemble multiple enzymes into one reaction scheme. Both types of routes will require further improvement to serve as a basis for a scalable route to DHAP.  相似文献   

8.
Fructaldolases (EC 4.1.2.13) are ancient enzymes of glycolysis that catalyze the reversible cleavage of phosphofructose esters into cognate triose (phosphates). Three vertebrate isozymes of Class I aldolase have arisen by gene duplication and display distinct activity profiles with fructose 1,6-bisphosphate and with fructose 1-phosphate. We describe the biochemical and biophysical characterization of seven natural human aldolase B variants, identified in patients suffering from hereditary fructose intolerance and expressed as recombinant proteins in E. coli, from which they were purified to homogeneity. The mutant aldolases were all missense variants and could be classified into two principal groups: catalytic mutants, with retained tetrameric structure but altered kinetic properties (W147R, R303W, and A337V), and structural mutants, in which the homotetramers readily dissociate into subunits with greatly impaired enzymatic activity (A149P, A174D, L256P, and N334K). Investigation of these two classes of mutant enzyme suggests that the integrity of the quaternary structure of aldolase B is critical for maintaining its full catalytic function.  相似文献   

9.
Genomic clones encoding the plastidic fructose- 1,6-bisphosphate aldolase ofChlamydomonas reinhardtii were isolated and sequenced. The gene contains three introns which are located within the coding sequence for the mature protein. No introns are located within or near the sequence encoding the transit-peptide, in contrast to the genes for plastidic aldolases of higher plants. Neither the number nor the positions of the three introns of theC. reinhardtii aldolase gene are conserved in the plastidic or cytosolic aldolase genes of higher plants and animals. The 5 border sequences of introns in the aldolase gene ofC. reinhardtii exhibit the conserved plant consensus sequence. The 3 acceptor splice sites for introns 1 and 3 show much less similarity to the eukaryotic consensus sequences than do those of intron 2. The plastidic aldolase gene has two tandemly repeated CAAT box motifs in the promoter region. Genomic Southern blots indicate that the gene is encoded by a single locus in theC. reinhardtii genome.  相似文献   

10.
Dihydroxyacetone phosphate (DHAP)-dependent aldolases have been widely used for organic synthesis. The major drawback of DHAP-dependent aldolases is their strict donor substrate specificity toward DHAP, which is expensive and unstable. Here we report the development of an in vivo selection system for the directed evolution of the DHAP-dependent aldolase, L-rhamnulose-1-phosphate aldolase (RhaD), to alter its donor substrate specificity from DHAP to dihydroxyacetone (DHA). We also report preliminary results on mutants that were discovered with this screen. A strain deficient in the L-rhamnose metabolic pathway in Escherichia coli (DeltarhaDAB, DE3) was constructed and used as a selection host strain. Co-expression of L-rhamnose isomerase (rhaA) and rhaD in the selection host did not restore its growth on minimal plate supplemented with L-rhamnose as a sole carbon source, because of the lack of L-rhamnulose kinase (RhaB) activity and the inability of WT RhaD aldolase to use unphosphorylated L-rhamnulose as a substrate. Use of this selection host and co-expression vector system gives us an in vivo selection for the desired mutant RhaD which can cleave unphosphorylated L-rhamnulose and allow the mutant to grow in the minimal media. An error-prone PCR (ep-PCR) library of rhaD gene on the co-expression vector was constructed and introduced into the rha-mutant, and survivors were selected in minimal media with l-rhamnose (MMRha media). An initial round of screening gave mutants allowing the selection strain to grow on MMRha plates. This in vivo selection system allows rapid screening of mutated aldolases that can utilize dihydroxyacetone as a donor substrate.  相似文献   

11.
Chiral β-hydroxy α-amino acid structural motifs are interesting and common synthons present in multiple APIs and drug candidates. To access these chiral building blocks either multistep chemical syntheses are required or the application of threonine aldolases, which catalyze aldol reactions between an aldehyde and glycine. Bioinformatics tools have been utilized to identify the gene encoding threonine aldolase from Vanrija humicola and subsequent preparation of its recombinant version from E. coli fermentation. We planned to implement this enzyme as a key step to access the synthesis of our target API. Beyond this specific application, the aldolase was purified, characterized and the substrate scope of this enzyme further investigated. A number of enzymatic reactions were scaled-up and the products recovered to assess the diastereoselectivity and scalability of this asymmetric synthetic approach towards β-hydroxy α-amino acid chiral building blocks.  相似文献   

12.
C E Clayton 《The EMBO journal》1985,4(11):2997-3003
Low stringency hybridisation with a rabbit aldolase cDNA was used to select cDNA clones encoding fructose biphosphate aldolase in Trypanosoma brucei. A clone which is almost full length encodes a protein of 41 027 daltons which has 50% identity with rabbit aldolase A and slightly lower homology with B-type aldolases. The homologous mRNA is at least 6-fold more abundant in bloodstream trypomastigotes than in procyclic forms, as expected from measurements of enzyme activity. Genomic mapping results indicate that trypanosomes have four copies of the aldolase gene arranged as two copies of a tandem repeat. The protein has a short N-terminal extension (relative to other known aldolases) which could be involved in the glycosomal localisation of the enzyme.  相似文献   

13.
The amino acid composition and other properties of fructose 1,6-diphosphate aldolase from pupae of Drosophila melanogaster are reported and compared with those of other class I aldolases. Drosophila aldolase subunits contain only four residues of cysteine, five histidines, and two methionines. All four cysteine side chains react with 5,5′-dithiobis(2-nitrobenzoic acid) only in the presence of denaturating agent and are therefore thought to be buried within the molecule. With bromoacetate one carboxymethyl group is incorporated in the native enzyme with the loss of 90% of catalytic activity; inorganic phosphate is partially inhibiting this reaction. The near-uv absorption spectra of Drosophila and rabbit muscle aldolases are similar, the insect enzyme having higher absorbancies over the entire region corresponding to its higher tryptophan content. Circular dichroism-spectra of Drosophila aldolase indicate an α-helix content of 26%. Both the insect and vertebrate enzymes display marked tryptophan ellipticity bands between 290 and 300 nm.  相似文献   

14.
Fructose-bisphosphate aldolases: an evolutionary history.   总被引:6,自引:0,他引:6  
Two mechanistically distinct forms of fructose-bisphosphate aldolase are known to exist. It has been assumed that the Class II (metallo) aldolases are evolutionary more primitive than their Class I (Schiff-base) analogs since the latter had only been found in eukaryotes. With the identification of prokaryotic Class I aldolases, we present here an alternative scheme of aldolase evolution. This scheme proposes that both aldolase classes are evolutionarily ancient and rationalizes the observed highly variable expression of both enzyme types in contemporary file forms.  相似文献   

15.
16.
A novel bacterial in vivo selection for pyruvate aldolase activity is described. Pyruvate kinase deficient cells, which lack the ability to biosynthetically generate pyruvate, require supplementation of exogenous pyruvate when grown on ribose. Supplementation with pyruvate concentrations as low as 50 microM rescues cell growth. A known substrate of the KDPG aldolases, 2-keto-4-hydroxy-4-(2'-pyridyl)butyrate (KHPB), also rescues cell growth, consistent with retroaldol cleavage by KDPG aldolase and rescue through pyruvate release. An initial round of selection against 2-keto-4-hydroxyoctonate (KHO), a nonsubstrate for wild-type aldolase, produced three mutants with intriguing alterations in protein sequence. This selection system allows rapid screening of mutant enzyme libraries and facilitates the discovery of enzymes with novel substrate specificities.  相似文献   

17.
A low-specificity l-threonine aldolase (l-TA) gene from Pseudomonas sp. strain NCIMB 10558 was cloned and sequenced. The gene contains an open reading frame consisting of 1,041 nucleotides corresponding to 346 amino acid residues. The gene was overexpressed in Escherichia coli cells, and the recombinant enzyme was purified and characterized. The enzyme, requiring pyridoxal 5′-phosphate as a coenzyme, is strictly l specific at the α position, whereas it cannot distinguish between threo and erythro forms at the β position. In addition to threonine, the enzyme also acts on various other l-β-hydroxy-α-amino acids, including l-β-3,4-dihydroxyphenylserine, l-β-3,4-methylenedioxyphenylserine, and l-β-phenylserine. The predicted amino acid sequence displayed less than 20% identity with those of low-specificity l-TA from Saccharomyces cerevisiae, l-allo-threonine aldolase from Aeromonas jandaei, and four relevant hypothetical proteins from other microorganisms. However, lysine 207 of low-specificity l-TA from Pseudomonas sp. strain NCIMB 10558 was found to be completely conserved in these proteins. Site-directed mutagenesis experiments showed that substitution of Lys207 with Ala or Arg resulted in a significant loss of enzyme activity, with the corresponding disappearance of the absorption maximum at 420 nm. Thus, Lys207 of the l-TA probably functions as an essential catalytic residue, forming an internal Schiff base with the pyridoxal 5′-phosphate of the enzyme to catalyze the reversible aldol reaction.β-Hydroxy-α-amino acids constitute an important class of compounds. They are natural products in their own right and are components of a range of antibiotics, for example, cyclosporin A, lysobactin, and vancomycin (30) and bouvardin and deoxybouvardin (6). 4-Hydroxy-l-threonine is a precursor of rizobitoxine, a potent inhibitor of pyridoxal 5′-phosphate (PLP)-dependent enzymes (32). 3,4,5-Trihydroxyl-l-aminopentanoic acid is a key component of polyoxins (32). l-threo-3,4-Dihydroxyphenylserine is a new drug for Parkinson’s disease therapy (13). However, the industrial production of β-hydroxy-α-amino acids has been limited to chemical synthesis processes, which need multiple steps to isolate the four isomers (l-threo form, d-threo form, l-erythro form, and d-erythro form). Threonine aldolase (EC 4.1.2.5), which stereospecifically catalyzes the retro-aldol cleavage of threonine, is a potentially useful catalyst for the synthesis of substituted amino acids from aldehyde and glycine (27, 31, 32).Two different types of threonine aldolases are known so far. l-allo-Threonine aldolase (l-allo-TA), isolated and purified from Aeromonas jandaei DK-39 (8), stereospecifically catalyzes the reversible interconversion of l-allo-threonine and glycine. Low-specificity l-threonine aldolase (l-TA) catalyzes the cleavage of both l-threonine and l-allo-threonine to glycine and acetaldehyde, as well as the reverse reaction, aldol condensation. The enzymes have been purified and characterized from Candida humicola (9, 34) and Saccharomyces cerevisiae (12). Low-specificity l-TA activity has also been shown to exist in mammals (7, 23, 26) and a variety of other microbial species (2, 4, 17, 35). The enzyme is physiologically important for the synthesis of cellular glycine in yeast (12, 15, 16). Threonine aldolases with distinct stereospecificities are ideal targets for enzymology studies on structural and functional relationships. However, information on the primary structures of threonine aldolases was limited to our recent studies (11, 12). The construction of an overproduction system for threonine aldolase will be indispensable for the industrial biosyntheses of β-hydroxy-α-amino acids.The present work focuses on the cloning, sequencing, and overexpression in Escherichia coli cells of the low-specificity l-TA gene from Pseudomonas sp. strain NCIMB 10558, the purification and characterization of the recombinant enzyme, and the identification of the active-site lysine residue of the enzyme by site-directed mutagenesis. Evidence is presented that Lys207 of low-specificity l-TA probably functions as a catalytic residue, forming an internal Schiff base with the PLP of the enzyme to catalyze the reversible aldol reaction. This is the first report showing a purified enzyme with l-β-3,4-dihydroxyphenylserine aldolase and l-β-3,4-methylenedioxyphenylserine aldolase activities, providing a new route for the industrial production of these important unnatural amino acids.  相似文献   

18.
The key enzyme of the glycolytic pathway of Deinococcus radiodurans, fructose-1,6-bisphosphate aldolase, could be induced independently by glucose and Mn. The enzyme exhibited the characteristics of the metal-dependent Class II aldolases. Unlike most Class II aldolases, the deinococcal aldolase preferred Mn, not Zn, as a cofactor. The fbaA gene encoding the deinococcal aldolase was cloned and the protein overproduced in various Escherichia coli expression hosts. However, the overexpressed deinococcal enzyme aggregated and formed inclusion bodies. Dissolving these inclusion bodies by urea and subsequent purification by nickel affinity chromatography, resulted in a protein fraction that exhibited aldolase activity only in the presence of Mn. This active aldolase fraction exhibited masses of about 70 kDa and 35 kDa by gel filtration and by SDS gel electrophoresis, respectively, suggesting that the active aldolase was a dimer.  相似文献   

19.
Genomic clones encoding the plastidic fructose- 1,6-bisphosphate aldolase ofChlamydomonas reinhardtii were isolated and sequenced. The gene contains three introns which are located within the coding sequence for the mature protein. No introns are located within or near the sequence encoding the transit-peptide, in contrast to the genes for plastidic aldolases of higher plants. Neither the number nor the positions of the three introns of theC. reinhardtii aldolase gene are conserved in the plastidic or cytosolic aldolase genes of higher plants and animals. The 5′ border sequences of introns in the aldolase gene ofC. reinhardtii exhibit the conserved plant consensus sequence. The 3′ acceptor splice sites for introns 1 and 3 show much less similarity to the eukaryotic consensus sequences than do those of intron 2. The plastidic aldolase gene has two tandemly repeated CAAT box motifs in the promoter region. Genomic Southern blots indicate that the gene is encoded by a single locus in theC. reinhardtii genome.  相似文献   

20.
To assess which regions of the aldolase C molecule are required for exhibiting isozyme-specific kinetic properties, we have constructed nine chimeric enzymes of human aldolases A and C. Kinetic studies of these chimeric enzymes revealed that aldolase C absolutely required its own isozyme group-specific sequences (IGS), particularly IGS-4, for exhibiting the characteristics of aldolase C which differ significantly from those of isozymes A and B (Kusakabe T, Motoki K, Hori K. Human aldolase C: characterization of the recombinant enzyme expressed in Escherichia coli. J Biochem (Tokyo) 1994;115:1172–7). Whereas human aldolases A and B required their own isozyme group-specific sequences-1 and -4 (IGS-1 and -4) as the main determinants of isozyme-specific kinetic properties (Motoki K, Kitajima Y, Hori K. Isozyme-specific modules on human aldolase A molecule. J Biol Chem 1993;268:1677–83; Kusakabe T, Motoki K, Sugimoto Y, Takasaki Y, Hori K. Human aldolase B: liver-specific properties of the isoenzyme depend on type B isozyme group-specific sequence. Prot. Eng. 1994;7:1387–93), the present studies indicate that the IGS-1 is principally substitutable between aldolases A and C. The kinetic data also suggests that the connector-2 (amino acid residues 243–306) may modulate the interaction of IGS units with the α/β barrel of the aldolase molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号