共查询到20条相似文献,搜索用时 0 毫秒
1.
Smith-Palmer T 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2002,781(1-2):93-106
Urinary creatinine has been analyzed for many years as an indicator of glomerular filtration rate. More recently, interest in studying the uptake of creatine as a result of creatine supplementation, a practice increasingly common among bodybuilders and athletes, has lead to a need to measure urinary creatine concentrations. Creatine levels are of the same order of magnitude as creatinine levels when subjects have recently ingested creatine, while somewhat elevated urinary creatine concentrations in non-supplementing subjects can be an indication of a degenerative disease of the muscle. Urinary creatine and creatinine can be analyzed by HPLC using a variety of columns. Detection methods include absorption, fluorescence after post-column derivatization, and mass spectrometry, and some methods have been automated. Capillary zone electrophoresis and micellar electrokinetic capillary chromatography have also been used to analyze urinary creatine and creatinine. Creatine and creatinine have also been analyzed in serum and tissue using HPLC and CE, and many of these separations could also be applicable to urinary analysis. 相似文献
2.
Slanina J Glatz Z 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2004,812(1-2):215-229
Lignans are a class of secondary plant metabolites produced by oxidative dimerization of two phenylpropanoid units. They have been found in many plants of Oriental medicine. In consequence of recent knowledge it is held that lignans are responsible for the key pharmacological activities of these plants. This review surveys the chromatographic, electromigration and hyphenated methods so far applied for the separation of lignans in Oriental plants used in phytotherapy as well as for the analyses of these lignans and their metabolites in biological matrices and food samples. In addition, the sample clean-up procedures--solvent extractions and supercritical fluid extractions--are also included. 相似文献
3.
4.
5.
6.
Aromatase is an important pharmacological target in the anti-cancer therapy as the intratumoral aromatase is the source of local estrogen production in breast cancer tissues. Suppression of estrogen biosynthesis by aromatase inhibition represents an effective approach for the treatment of hormone-sensitive breast cancer. Because of the membrane-bound character and heme-binding instability, no crystal structure of aromatase was reported for a long time, until recently when crystal structure of human placental aromatase cytochrome P450 in complex with androstenedione was deposited in PDB. The present study is towards understanding the structural and functional characteristics of aromatase to address unsolved mysteries about this enzyme and elucidate the exact mode of binding of aromatase inhibitors. We have performed molecular docking simulation with twelve different inhibitors (ligands), which includes four FDA approved drugs; two flavonoids; three herbal compounds and three compounds having biphenyl motif with known IC(50) values into the active site of the human aromatase enzyme. All ligands showed favorable interactions and most of them seemed to interact to hydrophobic amino acids Ile133, Phe134, Phe221, Trp224, Ala306, Val370, Val373, Met374 and Leu477 and hydrophilic Arg115 and neutral Thr310 residues. The elucidation of the actual structure-function relationship of aromatase and the exact binding mode described in this study will be of significant interest as its inhibitors have shown great promise in fighting breast cancer. 相似文献
7.
Through their enabling of simultaneous identification of multiple non-essential genes in a genome, large-segment genome deletion methods are an increasingly popular approach to minimize and tailor microbial genomes for specific functions. At present, difficulties in identifying target regions for deletion are a result of inadequate knowledge to define gene essentiality. Furthermore, with the majority of predicted open reading frames of completely sequenced genomes still annotated as putative genes, essential or important genes are found scattered throughout the genomes, limiting the size of non-essential segments that can be safely deleted in a single sweep. Recently described large-segment random genome deletion methods that utilize transposons enable the generation of random deletion strains, analysis of which makes identification of non-essential genes less tedious. Such and other efforts to determine the minimum genome content necessary for cell survival continue to accumulate important information that should help improve our understanding of genome function and evolution. This review presents an assessment of technological advancements of random genome deletion methods in prokaryotes to date. 相似文献
8.
9.
G Pontoni C Manna A Salluzzo L del Piano P Galletti M De Rosa V Zappia 《Biochimica et biophysica acta》1985,836(2):222-232
In order to elucidate the reaction mechanism and the substrate-binding sites, CDPcholine:1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2), prepared from rat liver microsomal fraction, has been subjected to kinetic analysis and substrate specificity studies. Kinetic evidence supports the hypothesis of a Bi-Bi sequential mechanism, involving a direct nucleophilic attack of diacylglycerol on CDPcholine during the reaction. To investigate the substrate requirements for recognition and catalysis, several CDPcholine analogs, modified in the nitrogen base or in the sugar or in the pyrophosphate bridge, have been synthesized, characterized and assayed as substrates and/or inhibitors of the reaction. The amino group on the pyrimidine ring, the 2'-alcoholic function of the ribose moiety as well as the pyrophosphate bridge have been identified as critical sites for enzyme-substrates interactions. 相似文献
10.
Su Q Rowley KG Balazs ND 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2002,781(1-2):393-418
Epidemiologic and clinical studies have shown that a high intake of vegetables and fruit, with consequently high intakes and circulating concentrations of carotenoids, is associated with reduced risk of cardiovascular and other chronic diseases. The antioxidant properties of carotenoids are thought to contribute to these effects. The analysis of carotenoids in plasma, foods and tissues has thus become of interest in studies examining the role of diet in chronic disease prevention and management. High-performance liquid chromatography with ultra-violet or photodiode array detection is most often employed in routine use. We review these and other current methods for carotenoid analysis and information on sample stability relevant to epidemiological studies. The carotenoids remain an important and intriguing subject of study, with relevance to prevention of several important "lifestyle-related" diseases. Research into their physiological functions and their use as dietary markers requires sensitive, accurate and precise measurement. Further advances in these methodological areas will contribute to basic, clinical and public health research into the significance of carotenoid compounds in disease prevention. 相似文献
11.
12.
The use of noninvasive genetic sampling to identify individual animals for capture-recapture studies has become widespread in the past decade. Strong emphasis has been placed on the field protocols and genetic analyses with fruitful results. Little attention has been paid to the capture-recapture application for this specific type of data beyond stating the effects of assumption violations. Here, we review the broad class of capture-recapture methods that are available for use with DNA-based capture-recapture data, noting the array of biologically interesting parameters such as survival, emigration rates, state transition rates and the finite rate of population change that can be estimated from such data. We highlight recent developments in capture-recapture theory specifically designed for noninvasive genetic sampling data. 相似文献
13.
The interaction between the Bacillus subtilis DPNase and its inhibitor is a time-dependent second order reaction, with a rate constant of 5.3 × 105 M?1 s?1 at 28 °C and pH 7.5. The interaction is noncompetitive with the substrate, and the presence of substrate does not affect the rate of interaction. Dissociation of the enzyme-inhibitor complex occurs below pH 4.3. The presence of DPN+ does not promote dissociation of the complex at neutral pH values, but does promote dissociation at pH 4.5.The enzyme has a high specificity for the presence of the nicotinamide ring in the substrate. DPN+ and TPN+ are the only dinucleotides that are hydrolyzed by the DPNase out of a number of DPN+ analogs that were tested. The thionicotinamide analog of DPN+ is a potent inhibitor of the enzyme.The stability of the DPNase and its inhibitor against heat and acid denaturation was also investigated. 相似文献
14.
The effects of a photoresponsive surfactant and light illumination on the complex formed between ribonuclease A (RNase A) and a protein ribonuclease inhibitor (RI) have been investigated to develop a light-based technique to reactivate an enzyme through surfactant-induced dissociation of the enzyme-inhibitor complex. The photoresponsive surfactant undergoes a photoisomerization from the relatively hydrophobic trans isomer under visible light to the relatively hydrophilic cis isomer upon UV illumination, providing a means to reversibly control protein-inhibitor interactions. In the absence of surfactant, RI binds tightly to RNase A through noncovalent interactions, which inhibits the enzyme activity. Upon addition of the surfactant under visible light, RNase A is reactivated, regaining ~75% of the native activity in the absence of RI. In the presence of the surfactant under UV light, however, the enzyme remains inhibited. Fluorescence spectroscopy, dynamic light scattering, and circular dichroism spectroscopy reveal that RI dramatically unfolds upon addition of the trans form of the surfactant, while RNase A does not undergo noticeable structural changes under the same conditions. This indicates that RNase A reactivation occurs through dissociation of the enzyme-inhibitor complex arising from surfactant-induced unfolding of the inhibitor. As a result, photoresponsive surfactant and light illumination can be used as a novel light-based technique to dissociate enzyme-inhibitor complexes and, thus, reactivate an inhibited enzyme. 相似文献
15.
The equilibrium constant (KX) for the reaction D-serine dehydratase + pyridoxamine-P in equilibrium KX D-serine apodehydratase: pyridoxamine-P + pyridoxal-P was determined. At 25 degreees, pH 7.80, KX increases from 5.4 times 10-minus 5 to 21 times 10-minus 5 as T/2 is increased from 0.33 to 0.66. A value of 1.3 times 10-minus 4 M at 25 degrees, pH 7.80, T/2 0.33 for the equilibrium constant (KPMP) for dissociation of pyridoxamine-P from D-serine apodehydratase was determined from the ratio of the equilibrium constant for dissociation of pyridoxal-P from holoenzyme to KX. Pyridoxamine-P and the thiazolidine, formed from pyridoxal-P and cysteine, were found to have similar affinities for D-serine apodehydratase. Using the affinities of these derivatives as a measure of the noncovalent interactions between cofactor and protein, it was possible to estimate the contribution of the Schiff base linkage to the stability of the complex formed between pyridoxal-P and protein. The covalent Schiff base linkage in the holoenzyme was found to be no more stable than the Schiff base linkage formed between 6-aminocaproic acid and pyridoxal-P. The contribution of noncovalent interactions to the stability of the cofactor-protein complex was shown to be at least 20 to 40 times greater than the contribution of the covalent Schiff base linkage. 相似文献
16.
Secondary enzyme-substrate interactions: kinetic evidence for ionic interactions between substrate side chains and the pepsin active site 总被引:2,自引:0,他引:2
The possibility that pig pepsin has a cation binding specificity in its secondary binding subsites has been examined by the pepsin-catalyzed hydrolysis of a series of synthetic octa- to undecapeptide substrates. These chromophoric substrates are cleaved by pepsin in the phenylalanyl-p-nitrophenylalanyl (Phe-Nph) bond. Lys and Arg residues were placed into seven different positions in the substrates, and their effect on kcat and Km was examined between pH 2.8 and pH 5.8 (I = 0.1 M, 37 degrees C). Kinetic evidence indicates the existence in the enzyme binding subsites S4, S3, S2, S3', S4', and S5' of a group(s) which become(s) negatively charged at higher pH. For most substrates, the magnitude as well as the pH dependence of kcat was unaffected by the presence of Lys or Arg in these peptides. In contrast, changes up to 5 orders of magnitude were observed for Km, depending on the number of basic residues and on their positions in the sequence. Km for a group of substrates at pH greater than 5.5 was lower than 50 nM. Values for kcat/Km for some substrates exceed the level of 10(8) M-1 s-1. Therefore, the free energy derived from ionic interactions in secondary binding sites influences mostly the binding step on the reaction pathway. This result is in contrast to the previous observations that the length and the hydrophobic character of the substrate residues in some positions influence kcat with little effect on Km toward shorter substrates of pepsin [Fruton, J. (1976) Adv. Enzymol. Relat. Areas Mol. Biol. 44, 1-36]. 相似文献
17.
18.
R Wolfenden 《Bioorganic & medicinal chemistry》1999,7(5):647-652
The theory of absolute reaction rates suggests that enzymes, like other catalysts, can enhance the rate of a reaction only to the extent that they bind the altered substrate in the transition state (S++) more tightly than they bind the substrate in the ground state (S). ES dissociation constants commonly fall in the physiological range, but recent kinetic studies indicate that formal ES++ dissociation constants of less than 10(-20) M are achieved by enzymes of several classes. Studies with stable analogues suggest that these remarkable powers of discrimination involve a tendency of the enzyme to close around S++ in such a way as to maximize binding contacts; that several parts of the substrate contribute to S++ binding; and that their contributions to binding affinity can be strongly synergistic. 相似文献
19.
C. Boudier M.L. Jung N. Stambolieva J.G. Bieth 《Archives of biochemistry and biophysics》1981,210(2):790-793
The active center of human leukocyte cathepsin G, human pancreatic chymotrypsin II, and bovine α-chymotrypsin has been investigated with a series of substrates of general formula succinyl-(l-alanine)n-phenylalanine-p-nitroanilide (n = 0 to 3). The three proteinases have an extended substrate binding site which includes at least six subsites. Secondary interactions are very important for their catalytic power since the longest substrate is hydrolyzed 600 to 1100 times faster than the shortest one. The regulatory subsite is S4 for bovine α-chymotrypsin and human cathepsin G whereas it is S5 for human chymotrypsin II. Cathepsin G is a poor catalyst compared to the two other enzymes. 相似文献
20.
Zhang Y Swaminathan GJ Deshpande A Boix E Natesh R Xie Z Acharya KR Brew K 《Biochemistry》2003,42(46):13512-13521
The retaining glycosyltransferase, alpha-1,3-galactosyltransferase (alpha3GT), is mutationally inactivated in humans, leading to the presence of circulating antibodies against its product, the alpha-Gal epitope. alpha3GT catalyzes galactose transfer from UDP-Gal to beta-linked galactosides, such as lactose, and in the absence of an acceptor substrate, to water at a lower rate. We have used site-directed mutagenesis to investigate the roles in catalysis and specificity of residues in alpha3GT that form H-bonds as well as other interactions with substrates. Mutation of the conserved Glu(317) to Gln weakens lactose binding and reduces the k(cat) for galactosyltransfer to lactose and water by 2400 and 120, respectively. The structure is not perturbed by this substitution, but the orientation of the bound lactose molecule is changed. The magnitude of these changes does not support a previous proposal that Glu(317) is the catalytic nucleophile in a double displacement mechanism and suggests it acts in acceptor substrate binding and in stabilizing a cationic transition state for cleavage of the bond between UDP and C1 of the galactose. Cleavage of this bond also linked to a conformational change in the C-terminal region of alpha3GT that is coupled with UDP binding. Mutagenesis indicates that His(280), which is projected to interact with the 2-OH of the galactose moiety of UDP-Gal, is a key residue in the stringent donor substrate specificity through its role in stabilizing the bound UDP-Gal in a suitable conformation for catalysis. Mutation of Gln(247), which forms multiple interactions with acceptor substrates, to Glu reduces the catalytic rate of galactose transfer to lactose but not to water. This mutation is predicted to perturb the orientation or environment of the bound acceptor substrate. The results highlight the importance of H-bonds between enzyme and substrates in this glycosyltransferase, in arranging substrates in appropriate conformations and orientation for efficient catalysis. These factors are manifested in increases in catalytic rate rather than substrate affinity. 相似文献