首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone conduction and seismic sensitivity in golden moles (Chrysochloridae)   总被引:2,自引:0,他引:2  
Some genera of golden moles are known to possess enormously hypertrophied auditory ossicles. These structures have been implicated as potentially mediating a form of inertial bone conduction, used by the golden mole to detect seismic vibrations. A simple model of ossicular inertial bone conduction, based on an existing model of the human middle ear from the literature, was used in an attempt to examine vibrational sensitivity in these animals. Those golden moles with hypertrophied ossicles are predicted to possess a sensitive inertial bone conduction response at frequencies below a few hundred hertz, whereas species lacking these middle ear adaptations are predicted to have a far less sensitive response in this ecologically important frequency range. An alternative mode of inertial bone conduction in golden moles, potentially conferring sensitivity to vertically-polarized seismic vibrations such as Rayleigh waves, is proposed. Certain behaviours of golden moles described in the literature are interpreted as augmenting seismic sensitivity.  相似文献   

2.
The ossicular apparatus of golden moles in the genus Chlorotalpa has received comparatively little attention in the literature, although the malleus is known to be intermediate in size between the "unmodified" malleus of Amblysomus and the hypertrophied mallei found in some other golden moles. In the present study, the middle ear structures of three Chlorotalpa species (C. duthieae, C. sclateri, and C. arendsi) are described. Measurements of middle ear structures were applied into three existing models of middle ear function. The predictions from the models suggest that the airborne hearing of Chlorotalpa species is limited to relatively low frequencies, but the impedance transformation by the middle ear apparatus is expected to be reasonably efficient. The sensitivity of the middle ear apparatus to inertial bone conduction is intermediate between that predicted for Amblysomus and that predicted for species with hypertrophied mallei. Hearing in fossorial mammals may be limited by factors other than the middle ear apparatus: the predictions for Chlorotalpa must therefore be treated with caution. However, a consideration of the "intermediate" middle ear morphology of Chlorotalpa species sheds some light on the origin of ossicular hypertrophy in golden moles. The limited enlargement of the malleus seen in Chlorotalpa is expected to have improved seismic sensitivity by bone conduction significantly at low frequencies, while airborne hearing might not have been adversely affected.  相似文献   

3.
The middle ear structures of eight species of mole in the family Talpidae (Mammalia: Eulipotyphla) were studied under light and electron microscopy. Neurotrichus, Parascalops, and Condylura have a simple middle ear cavity with a loose ectotympanic bone, ossicles of a "microtype" morphology, and they retain a small tensor tympani muscle. These characteristics are ancestral for talpid moles. Talpa, Scalopus, Scapanus, and Parascaptor species, on the other hand, have a looser articulation between malleus and ectotympanic bone and a reduced or absent orbicular apophysis. These species lack a tensor tympani muscle, possess complete bullae, and extensions of the middle ear cavity pneumatize the surrounding basicranial bones. The two middle ear cavities communicate in Talpa, Scapanus, and Parascaptor species. Parascaptor has a hypertrophied malleus, a feature shared with Scaptochirus but not found in any other talpid genus. Differences in middle ear morphology within members of the Talpidae are correlated with lifestyle. The species with middle ears closer to the ancestral type spend more time above ground, where they will be exposed to high-frequency sound: their middle ears appear suited for transmission of high frequencies. The species with derived middle ear morphologies are more exclusively subterranean. Some of the derived features of their middle ears potentially improve low-frequency hearing, while others may reduce the transmission of bone-conducted noise. By contrast, the unusual middle ear apparatus of Parascaptor, which exhibits striking similarities to that of golden moles, probably augments seismic sensitivity by inertial bone conduction.  相似文献   

4.
Many living species of golden moles (Chrysochloridae) have greatly enlarged middle ear ossicles, believed to be used in the detection of ground vibrations through inertial bone conduction. Other unusual features of chrysochlorids include internally coupled middle ear cavities and the loss of the tensor tympani muscle. Our understanding of the evolutionary history of these characteristics has been limited by the paucity of fossil evidence. In this article, we describe for the first time the exquisitely preserved middle and inner ears of Namachloris arenatans from the Palaeogene of Namibia, visualised using computed tomography, as well as ossicles attributed to this species. We compare the auditory region of this fossil golden mole, which evidently did not possess a hypertrophied malleus, to those of three extant species with similarly sized ear ossicles, Amblysomus hottentotus, Calcochloris obtusirostris, and Huetia leucorhinus. The auditory region of Namachloris shares many common features with the living species, including a pneumatized, trabeculated basicranium and lateral skull wall, arteries and nerves of the middle ear contained in bony tubes, a highly coiled cochlea, a secondary crus commune, and no identifiable canaliculus cochleae for the perilymphatic duct. However, Namachloris differs from extant golden moles in the apparent absence of a basicranial intercommunication between the right and left ears, the possession of a tensor tympani muscle and aspects of ossicular morphology. One Namachloris skull showed what may be pneumatization of some of the dorsal cranial bones, extending right around the brain. Although the ossicles are small in absolute terms, one of the Huetia leucorhinus specimens had a more prominent malleus head than the other. This potentially represents a previously unrecognised subspecific difference.  相似文献   

5.
The densities of middle ear ossicles of golden moles (family Chrysochloridae, order Afrosoricida) were measured using the buoyancy method. The internal structure of the malleus was examined by high-resolution computed tomography, and solid-state NMR was used to determine relative phosphorus content. The malleus density of the desert golden mole Eremitalpa granti (2.44 g/cm3) was found to be higher than that reported in the literature for any other terrestrial mammal, whereas the ossicles of other golden mole species are not unusually dense. The increased density in Eremitalpa mallei is apparently related both to a relative paucity of internal vascularization and to a high level of mineralization. This high density is expected to augment inertial bone conduction, used for the detection of seismic vibrations, while limiting the skull modifications needed to accommodate the disproportionately large malleus. The mallei of the two subspecies of E. granti, E. g. granti and E. g. namibensis, were found to differ considerably from one another in both size and shape.  相似文献   

6.
Golden moles (Chrysochloridae) are fossorial mammals known to have unusual mallei. The aim of this study was to describe and quantify aspects of the auditory morphology of golden moles in order to determine their systematic and functional implications. Observations were made on skeletal material as well as histological sections. The results of this study do not support the separation of the genus Calcochloris from Amblysomus . It was found that the morphology shared by all the studied genera is indicative of specialization for hearing low frequency sound. The tympanic membrane to stapes footplate ratios, ossicular lever arm ratios and incudomallear joint morphology suggest low frequency specializations in genera with small mallear heads and high frequency specializations in genera with large mallear heads. However, the size and degree of trabeculation of the tympanic cavity are not consistent with this result. It is proposed that all golden moles are low frequency hearers with differences in their range of sensitivity according to how much time they spend foraging above ground.  相似文献   

7.
Relative to other metazoans, the mammalian integument is thought to be limited in colour. In particular, while iridescence is widespread among birds and arthropods, it has only rarely been reported in mammals. Here, we examine the colour, morphology and optical mechanisms in hairs from four species of golden mole (Mammalia: Chrysochloridae) that are characterized by sheens ranging from purple to green. Microspectrophotometry reveals that this colour is weak and variable. Iridescent hairs are flattened and have highly reduced cuticular scales, providing a broad and smooth surface for light reflection. These scales form multiple layers of light and dark materials of consistent thickness, strikingly similar to those in the elytra of iridescent beetles. Optical modelling suggests that the multi-layers produce colour through thin-film interference, and that the sensitivity of this mechanism to slight changes in layer thickness and number explains colour variability. While coloured integumentary structures are typically thought to evolve as sexual ornaments, the blindness of golden moles suggests that the colour may be an epiphenomenon resulting from evolution via other selective factors, including the ability to move and keep clean in dirt and sand.  相似文献   

8.
Vertebrates inhabit and communicate acoustically in most natural environments. We review the influence of environmental factors on the hearing sensitivity of terrestrial vertebrates, and on the anatomy and mechanics of the middle ears. Evidence suggests that both biotic and abiotic environmental factors affect the evolution of bandwidth and frequency of peak sensitivity of the hearing spectrum. Relevant abiotic factors include medium type, temperature, and noise produced by nonliving sources. Biotic factors include heterospecific, conspecific, or self-produced sounds that animals are selected to recognize, and acoustic interference by sounds that other animals generate. Within each class of tetrapods, the size of the middle ear structures correlates directly to body size and inversely to frequency of peak sensitivity. Adaptation to the underwater medium in cetaceans involved reorganization of the middle ear for novel acoustic pathways, whereas adaptation to subterranean life in several mammals resulted in hypertrophy of the middle ear ossicles to enhance their inertial mass for detection of seismic vibrations. The comparative approach has revealed a number of generalities about the effect of environmental factors on hearing performance and middle ear structure across species. The current taxonomic sampling of the major tetrapod groups is still highly unbalanced and incomplete. Future expansion of the comparative evidence should continue to reveal general patterns and novel mechanisms.  相似文献   

9.
Abstract

Osteoporosis (OP) is common with advancing age. Several studies have shown a strong correlation between OP and otosclerosis. However, no studies have investigated OP of the malleus, incus or stapes in the human middle ear, its effect on middle ear transfer function. Here, we investigate whether these three ossicles develop OP, and how this affects middle ear transfer function. The effect of OP on middle ear transfer function was investigated in simulations based on a finite element (FE) method. First, the FE model used in our previous study was refined, and optimized by introducing viscoelastic properties to selected soft tissues of the middle ear. Then, the FE model was used to simulate OP of the three ossicles and assess its influence on middle ear transfer function. Other possible age-related changes, such as stiffness of the joints or ligaments in the middle ear, were also investigated. The results indicated that OP of the ossicles could increase the high frequency displacement of both the umbo and stapes footplate (FP). However, the stiffness of the middle ear soft tissue can lead to the decrease of middle ear gain at lower frequencies. Furthermore, loosening of these joints or ligaments could increase displacement of the umbo and stapes FP. In conclusion, although age-related hearing loss is most commonly conceived of as sensorineural hearing loss (SNHL), we found that age-related changes may also include OP and changes in joint stiffness, but these will have little effect on middle ear transfer function in elderly people.  相似文献   

10.
The first MRP (matrix representation with parsimony) supertree phylogeny of the Lipotyphla is presented, covering all the families that were considered to make up the traditional mammalian order Insectivora. The phylogeny does not examine relationships within the shrew subfamily Crocidurinae, but all other taxa are considered at the species level, drawing upon 41 years of systematic literature and combining information from 47 published sources. The MRP technique is also critically discussed. This study will be of use to comparative biology studies of the Lipotyphla (or of mammals as a whole) and is a rigorous review of past systematic work, as well as clearly demonstrating our current level of knowledge. The supertree clearly details a strong imbalance in phylogenetic understanding across the taxon: a great deal is known about the hedgehogs and gymnures (Erinaceidae), the New World moles (Talpidae), Palaearctic species of Sorex (subgenus Sorex ) and the relationships between genera of red-toothed shrews (Soricinae). The supertree, however, clearly shows areas where our knowledge is conflicting or non-existent, and these gaps do not always correspond to obscure species: nothing is known about the systematics of Old World mole genera. Also very little is known about golden moles (Chrysochloridae) and the shrew-tenrec genus Microgale , some of the most threatened mammals on Earth.  相似文献   

11.
Under sexual selection, genitalia typically undergo rapid and divergent evolution across species and competition between the sexes over control of fertilisation may drive the co-evolution of male and female sexual traits. Sexual selection can, therefore, influence genitalia in three fundamental but non-mutually exclusive ways: (1) cryptic female choice, (2) sperm competition and (3) sexual conflict. Golden moles (Chrysochloridae) are a highly specialised family endemic to sub-Saharan Africa. We examined intra-specific genital allometry of both male and female subterranean Hottentot golden moles (Amblysomus hottentotus). Consistent with previous studies in mammals, we found positive allometry and a high coefficient of variation (CV) for male genitalia. The results for female reproductive tract length of A. hottentotus contrast with the findings of previous studies as isometry was recorded. Based on the allometric relationships of both males and females presented here, we suggest that the males do not sequester females and that in the absence of visual cues the female may use penis size as an indicator of phenotypic quality.  相似文献   

12.
Primates show distinctions in hearing sensitivity and auditory morphology that generally follow phylogenetic patterns. However, few previous studies have attempted to investigate how differences in primate hearing are directly related to differences in ear morphology. This research helps fill this void by exploring the form‐to‐function relationships of the auditory system in a phylogenetically broad sample of non‐human primates. Numerous structures from the outer, middle, and inner ears were measured in taxa with known hearing capabilities. The structures investigated include the overall size and shape of the pinna, the areas of the tympanic membrane and stapedial footplate, the masses and lever arm lengths of the ossicles, the volumes of the middle ear cavities, and the length of the cochlea. The results demonstrate that a variety of auditory structures show significant correlations with certain aspects of hearing (particularly low‐frequency sensitivity). Although the majority of these relationships agree with expectations from auditory theory, some traditional (and possibly outdated) ideas were not supported. For example, the common misconception that higher middle ear transformer ratios (e.g., impedance transformer ratio) result in increased hearing sensitivity was not supported. Although simple correlations between form and function do not necessarily imply causality, the relationships defined in this study not only increase our understanding of auditory patterns in extant taxa but also lay the foundation to begin investigating the hearing in fossil primates. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.

Background  

Golden moles (Chrysochloridae) are small, subterranean, afrotherian mammals from South Africa and neighboring regions. Of the 21 species now recognized, some (e.g., Chrysochloris asiatica, Amblysomus hottentotus) are relatively common, whereas others (e.g., species of Chrysospalax, Cryptochloris, Neamblysomus) are rare and endangered. Here, we use a combined analysis of partial sequences of the nuclear GHR gene and morphological characters to derive a phylogeny of species in the family Chrysochloridae.  相似文献   

14.
Kuntner, M., May‐Collado, L. J. & Agnarsson, I. (2010). Phylogeny and conservation priorities of afrotherian mammals (Afrotheria, Mammalia). —Zoologica Scripta, 40, 1–15. Phylogenies play an increasingly important role in conservation biology providing a species‐specific measure of biodiversity – evolutionary distinctiveness (ED) or phylogenetic diversity (PD) – that can help prioritize conservation effort. Currently, there are many available methods to integrate phylogeny and extinction risk, with an ongoing debate on which may be best. However, the main constraint on employing any of these methods to establish conservation priorities is the lack of detailed species‐level phylogenies. Afrotheria is a recently recognized clade grouping anatomically and biologically diverse placental mammals: elephants and mammoths, dugong and manatees, hyraxes, tenrecs, golden moles, elephant shrews and aardvark. To date, phylogenetic studies have focused on understanding higher level relationships among the major groups within Afrotheria. Here, we provide a species‐level phylogeny of Afrotheria based on nine molecular loci, placing nearly 70% of the extant afrotherian species (50) and five extinct species. We then use this phylogeny to assess conservation priorities focusing on the widely used evolutionary distinctiveness and global endangeredness (EDGE) method and how that compares to the more recently developed PD framework. Our results support the monophyly of Afrotheria and its sister relationship to Xenarthra. Within Afrotheria, the basal division into Afroinsectiphilia (aardvark, tenrecs, golden moles and elephant shrews) and Paenungulata (hyraxes, dugongs, manatees and elephants) is supported, as is the monophyly of all afrotherian families: Elephantidae, Procaviidae, Macroscelididae, Chrysochloridae, Tenrecidae, Trichechidae and Dugongidae. Within Afroinsectiphilia, we recover the most commonly proposed topology (Tubulidentata sister to Afroscoricida plus Macroscelidea). Within Paenungulata, Sirenia is sister to Hyracoidea plus Proboscidea, a controversial relationship supported by morphology. Within Proboscidea, the mastodon is sister to the remaining elephants and the woolly mammoth sister to the Asian elephant, while both living elephant genera, Loxodonta and Elephas are paraphyletic. Top ranking evolutionarily unique species always included the aardvark, followed by several species of elephant shrews and tenrecs. For conservation priorities top ranking species always included the semi‐aquatic Nimba otter shrew, some poorly known species, such as the Northern shrew tenrec, web‐footed tenrec, giant otter shrew and Giant golden mole, as well as high profile conservation icons like Asian elephant, dugong and the three species of manatee. Conservation priority analyses were broadly congruent between the EDGE and PD methodologies. However, for certain species EDGE overestimates conservation urgency as it, unlike PD, fails to account for the status of closely related, but less threatened, species. Therefore, PD offers a better guide to conservation decisions.  相似文献   

15.
We investigated if and how the inner ear region undergoes similar adaptations in small, fossorial, insectivoran‐grade mammals, and found a variety of inner ear phenotypes. In our sample, afrotherian moles (Chrysochloridae) and the marsupial Notoryctes differ from most other burrowing mammals in their relatively short radii of semicircular canal curvature; chrysochlorids and fossorial talpids share a relatively long interampullar width. Chrysochlorids are unique in showing a highly coiled cochlea with nearly four turns. Extensive cochlear coiling may reflect their greater ecological dependence on low frequency auditory cues compared to talpids, tenrecids, and the marsupial Notoryctes. Correspondingly, the lack of such extensive coiling in the inner ear of other fossorial species may indicate a greater reliance on other senses to enable their fossorial lifestyle, such as tactile sensation from vibrissae and Eimer's organs. The reliance of chrysochlorids on sound is evident in the high degree of coiling and in the diversity of its mallear types, and may help explain the lack of any semiaquatic members of that group. The simplest mallear types among chrysochlorids are not present in the basal‐most members of that clade, but all extant chrysochlorids investigated to date exhibit extensive cochlear coiling. The chrysochlorid ear region thus exhibits mosaic evolution; our data suggest that extensive coiling evolved in chrysochlorids prior to and independently of diversification in middle ear ossicle size and shape. J. Morphol. 276:900–914, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Golden moles (Chrysochloridae) are small, subterranean mammals endemic to sub-Saharan Africa that together with tenrecs constitute one of six orders in Afrotheria. Here we present a comprehensive karyotypic comparison among six species/subspecies of golden moles based on G-banding and chromosome painting. By expanding the species representation to include a further five species recently published in a companion paper, we were able to map the distribution of telomeric repeats in ten species/subspecies that are representative of six of the nine currently recognized genera. We conclude that: (i) the monophyly of Amblysomus is supported by the amplification of heterochromatin in several pericentric regions and one intrachromosomal rearrangement; (ii) A. hottentotus meesteri groups as sister to a clade that contains A. h. hottentotus, A. h. longiceps, A. h. pondoliae and A. robustus, an association that is underpinned by a shared intrachromosomal rearrangement and the detection of telomeric sequences in the centromeres of all chromosomes of the three A. hottentotus subspecies and A. robustus but, importantly, not in those of A. h. meesteri. These findings indicate an absence of gene flow suggesting that A. h. meesteri should be elevated to specific status. We hypothesize that the lack of gene flow may, in part, reflect hybrid dysgenesis resulting from abnormal meiotic segregation as a consequence of differences in the nature of the centromeric specific satellites; (iii) chromosomes 7 and 13 of Chrysochloris asiatica are fused in both Calcochloris obtusirostris and Eremitalpa granti, but that the position of the centromere in the fused chromosome differs in each species. This suggests that rather than being indicative of common ancestry, the fusion is more likely a convergent character which has arisen independently in each lineage. Furthermore our painting data show two centromeric shifts that are probably autapomorphic for C. obtusirostris. Finally, we conclude that (iv) golden moles are characterized by strong karyotypic conservatism but in marked contrast to the constrained rates of change exhibited by most species, A. robustus is unique in that three autapomorphic fissions define its evolutionary history, and hence the more extensive reshuffling of its genome.  相似文献   

17.
Temporal bone computed tomography (CT) was used to examine 64 patients with impaired hearing due to inflammatory diseases of the middle year. In 21 patients, the pathological process was bilateral. A total of 85 series of temporal bone CT scans were analyzed. The patients' age ranged from 2 to 66 years. CT verified adhesive otitis media in 62 cases, otosclerosis in 7, local malformation of the auditory ossicles and/or the labyrinthine fenestrae in 11. No CT changes were revealed in 5 cases. The CT symptoms of adhesive otitis media were identified. These included soft tissue bands and/or soft tissue-density portions that fix the auditory ossicles or block the niches of the labyrinthine fenestrae (31 temporal bones); sclerosis or ossification of the ligaments and tendons of the middle ear (7 temporal bones); calcification foci in the tympanic cavity (9 cases); osteosclerotic changes in the epitympanus (2 cases); cicatricial changes in the tympanic membrane (24 cases); destructive changes in the auditory ossicles (19 temporal bones). There has been evidence that CT may be used for the differential diagnosis of adhesive otitis media from otosclerosis and congenital malformations of the structures of the middle ear.  相似文献   

18.
The human ear is a complex biomechanical system and is divided into three parts: outer, middle and inner ear. The middle ear is formed by ossicles (malleus, incus and stapes), ligaments, muscles and tendons, which transfers sound vibrations from the eardrum to the inner ear, linking with mastoid and Eustachian tube. In this work, a finite element modelling of the tympano-ossicular system of the middle ear was developed. A dynamic study based on a structural response to harmonic vibrations, for a sound pressure level (SPL) of 110, 120 and 130 dB SPL applied in the eardrum, is presented. The connection between the ossicles is made using a contact formulation. The model includes the different ligaments considering its hyperelastic behaviour. The activation of the muscles is based on the constitutive model proposed by previous work. The harmonic responses of displacement and pressure obtained on the stapes footplate, for a frequency range between 100 Hz and 10 kHz, are obtained simulating the muscle activation. The results are compared considering the passive and active states. The results are discussed and they are in accordance with audiological data published with reference to the effects of the middle ear muscles contraction.  相似文献   

19.
The middle ear apparatus is composed of three endochondrial ossicles (the stapes, incus and malleus) and two membranous bones, the tympanic ring and the gonium, which act as structural components to anchor the ossicles to the skull. Except for the stapes, these skeletal elements are unique to mammals and are derived from the first and second branchial arches. We show that, in combination with goosecoid (Gsc), the Bapx1 gene defines the structural components of the murine middle ear. During embryogenesis, Bapx1 is expressed in a discrete domain within the mandibular component of the first branchial arch and later in the primordia of middle ear-associated bones, the gonium and tympanic ring. Consistent with the expression pattern of Bapx1, mouse embryos deficient for Bapx1 lack a gonium and display hypoplasia of the anterior end of the tympanic ring. At E10.5, expression of Bapx1 partially overlaps that of Gsc and although Gsc is required for development of the entire tympanic ring, the role of Bapx1 is restricted to the specification of the gonium and the anterior tympanic ring. Thus, simple overlapping expression of these two genes appears to account for the patterning of the elements that compose the structural components of the middle ear and suggests that they act in concert. In addition, Bapx1 is expressed both within and surrounding the incus and the malleus. Examination of the malleus shows that the width, but not the length, of this ossicle is decreased in the mutant mice. In non-mammalian jawed vertebrates, the bones homologous to the mammalian middle ear ossicles compose the proximal jaw bones that form the jaw articulation (primary jaw joint). In fish, Bapx1 is responsible for the formation of the joint between the quadrate and articular (homologues of the malleus and incus, respectively) enabling an evolutionary comparison of the role of a regulatory gene in the transition of the proximal jawbones to middle ear ossicles. Contrary to expectations, murine Bapx1 does not affect the articulation of the malleus and incus. We show that this change in role of Bapx1 following the transition to the mammalian ossicle configuration is not due to a change in expression pattern but results from an inability to regulate Gdf5 and Gdf6, two genes predicted to be essential in joint formation.  相似文献   

20.
The cryptic, subterranean ways of golden moles (Chrysochloridae) hamper studies of their biology in the field. Ten species appear on the IUCN red list, but the dearth of information available for most inhibits effective conservation planning. New techniques are consequently required to further our understanding and facilitate informed conservation management decisions. We studied the endangered Juliana's golden mole Neamblysomus julianae and aimed to evaluate the feasibility of using implantable temperature sensing transmitters to remotely acquire physiological and behavioural data. We also aimed to assess potential body temperature ( T b) fluctuations in relation to ambient soil temperature ( T a) in order to assess the potential use of torpor. Hourly observations revealed that T b was remarkably changeable, ranging from 27 to 33 °C. In several instances T b declined during periods of low T a. Such 'shallow torpor' may result in a daily energy saving of c . 20%. Behavioural thermoregulation was used during periods of high T a by selecting cooler microclimates, while passive heating was used to raise T b early morning when T a was increasing. In contrast to anecdotal reports of nocturnal patterns of activity, our results suggest that activity is flexible, being primarily dependent on T a. These results exemplify how behavioural patterns and microclimatic conditions can be examined in this and other subterranean mammal species, the results of which can be used in the urgently required conservation planning of endangered Chrysochlorid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号