首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
E.M. Home 《Tissue & cell》1976,8(2):311-333
Paired centrioles and associated ciliary root material occur in all eight retinula cells in the nine species investigated. In the diurnal Notiophilus, Elaphrus and Bembidion where the distal rhabdomere of cell 7 is fused with the proximal rhabdom formed by cells 1 to 6, the roots in cells 1 to 6 extend for the entire length of the retinula. In Notiophilus their arrangement around the rhabdom suggests a complementary mechanical relationship between the six large roots and the four Semper cell processes. In five relatively nocturnal species a retinula cell column separates the distal rhabdomere from the proximal rhabdom. In cells 1 to 6 root material is associated with the distally located centrioles as follows. In Leistus roots extend into the proximal rhabdom layer. In Loricera and Agonum roots at the level of the proximal rhabdom are not continuous with the rootlets or short roots associated with the centrioles. In Pseudophonus and Feronia, and in the diurnal Cicindela, short rootlets link the centrioles. Cell movements on dark-adaptation of Notiophilus and Cicindela include shortening of the crystalline tract. In Notiophilus the entire rhabdom is apparently displaced, whereas in Cicindela the narrow distal rhabdomere becomes dissociated from the proximal rhabdom.  相似文献   

2.
Evolutionary significance of fine structure of archiannelid eyes   总被引:1,自引:0,他引:1  
Summary The structure of the ocelli of representatives of four of the five families of archiannelids (Polychaeta: Annelida) was studied by light and electron microscopy. The apparent photoreceptoral organelle in each species is an array of microvilli (rhabdomere). Cilia were observed in the eyes of only a couple of specimens in one species of archiannelid (Nerilla antennata). They were unassociated with the rhabdomeres; we regard them as adventitious. Support is given by this study to the theory that the photoreceptoral organelle of the ancestral annelid was a rhabdomere. Other features of the ocelli are described and illustrated.We acknowledge the support of a grant-in-aid of research (GM 10292) from the United States Public Health Service; the skillful transformation of our sketches into finished drawings by Phyllis Thompson; the assistance of Jean Brandenburger in the electron microscopy of villar particles; and the critical reading of the paper by Mrs. Brandenburger and Drs. Colin O. Hermans and Ralph I. Smith  相似文献   

3.
Summary The morphology and distribution of nerve fibers showing enkephalin-like immunoreactivity was studied in rat and mouse iris whole mounts. In adult rat, a relatively dense network of varicose fibers was seen throughout the iris. Individual, long, usually smooth fibers were observed running together with non-fluorescent fibers in bundles. Positive nerve fibers were also seen in the ciliary body and the choroid membrane. The fluorescence intensity was normally low. No enkephalin-positive fibers were detected in adult mouse iris.Extirpation or lesioning either one or all the three ganglia known to supply the rat iris with nerve fibers, the superior cervical, the ciliary and the trigeminal ganglia, caused no detectable decrease in amount of enkephalin-positive fibers. However, in irides grafted to the anterior eye chamber of adult recipients, no enkephalin-positive fibers could be observed 2–12 days postoperatively, strongly suggesting that degeneration of these fibers had occurred. When iris grafts were left longer in the eye, nerve fibers with enkephalin-like immunoreactivity reappeared. An increased fluorescence intensity was observed both in the ipsilateral and contralateral iris following extirpation or lesioning all three ganglia and in the ipsilateral iris after extirpation of the ciliary ganglion. Three days after a systemic injection of capsaicin, which causes a permanent disappearance of substance P fibers, the same phenomenon was often observed. This raises the possibility of an interaction between the enkephalin-positive and the substance P fiber systems in the iris.The present experiments thus demonstrate a rich network of enkephalin immunoreactive nerve fibers in the rat iris originating outside the iris but apparently not in the ciliary, trigeminal or superior cervical ganglion.  相似文献   

4.
Drosophila melanogaster photoreceptors are highly polarized cells and their plasma membrane is organized into distinct domains. Zonula adherens junctions separate a smooth peripheral surface, the equivalent of the basolateral surface in other epithelial cells, from the central surface (approximately equal to apical surface). The latter consists of the microvillar rhabdomere and the juxtarhabdomeric domain, a nonmicrovillar area between the rhabdomere and the zonulae adherens. The distribution of Na/K-ATPase over these domains was examined by immunocytochemical, developmental, and genetic approaches. Immunofluorescence and immunogold labeling of adult compound eyes reveal that the distribution of Na/K-ATPase is concentrated at the peripheral surface in the photoreceptors R1-R6, but extends over the juxtarhabdomeric domain to the rhabdomere in the photoreceptors R7/R8. Developmental analysis demonstrates further that Na/K-ATPase is localized over the entire plasma membrane in all photoreceptors in early pupal eyes. Redistribution of Na/K-ATPase in R1-R6 occurs at about 78% of pupal life, coinciding with the onset of Rh1-rhodopsin expression on the central surface of these cells. Despite the essential role of Rh1 in structural development and intracellular trafficking, Rh1 mutations do not affect the distribution of Na/K-ATPase. These results suggest that Na/K-ATPase and rhodopsin are involved in distinct intracellular localization mechanisms, which are maintained independent of each other.  相似文献   

5.
Rhodopsins (Rhs) are light sensors, and Rh1 is the major Rh in the Drosophila photoreceptor rhabdomere membrane. Upon photoactivation, a fraction of Rh1 is internalized and degraded, but it remains unclear how the rhabdomeric Rh1 pool is replenished and what molecular players are involved. Here, we show that Crag, a DENN protein, is a guanine nucleotide exchange factor for Rab11 that is required for the homeostasis of Rh1 upon light exposure. The absence of Crag causes a light-induced accumulation of cytoplasmic Rh1, and loss of Crag or Rab11 leads to a similar photoreceptor degeneration in adult flies. Furthermore, the defects associated with loss of Crag can be partially rescued with a constitutive active form of Rab11. We propose that upon light stimulation, Crag is required for trafficking of Rh from the trans-Golgi network to rhabdomere membranes via a Rab11-dependent vesicular transport.  相似文献   

6.
The internal ocelli of sphinx moths have receptor cells with a rhabdomere structure that is unique for insects. The rhabdomere consists of an invagination of a single receptor cell membrane to produce a cavity lined with microvilli and containing small lumen.  相似文献   

7.
A wave-optical model for the integrated facet lens-rhabdomere system of fly eyes is used to calculate the effective light power in the rhabdomeres when the eye is illuminated with a point light source or with an extended source. Two rhabdomere types are considered: the slender rhabdomeres of R7,8 photoreceptors and the wider, but tapering R1-6 rhabdomeres. The angular sensitivities of the two rhabdomere types have been calculated as a function of F-number and wavelength by fitting Gaussian functions to the effective light power. For a given F-number, the angular sensitivity broadens with wavelength for the slender rhabdomeres, but it stays approximately constant for the wider rhabdomeres. The integrated effective light power increases with the rhabdomere diameter, but it is for both rhabdomere types nearly independent of the light wavelength and F-number. The results are used to interpret the small F-number of Drosophila facet lenses. Presumably the small head puts a limit to the size of the facet lens and favors a short focal length.  相似文献   

8.
A wave optics model for the facet lens-rhabdomere system of fly eyes is used to analyze the dependence of the angular and spectral sensitivity of R1–6 photoreceptors on the pupil mechanism. This assembly of light-absorbing pigment granules in the soma interacts with the waveguide modes propagating in the rhabdomere. A fly rhabdomere carries two modes in the middle wavelength range and four modes at short wavelengths, depending on the rhabdomere diameter and the angle of the incident light flux. The extension of the mode to outside the rhabdomere strongly depends on wavelength, and this dependence plays a determinant role in the light control function of the pupil. The absorbance spectrum of the pigment in the pupil granules is severely depressed at short wavelengths by waveguide effects, resulting in a distinct blue peak. Accordingly, pupil closure suppresses the photoreceptors spectral sensitivity much more in the blue-green than in the UV. The pupil only narrows the angular sensitivity at short wavelengths. The geometrical size of the rhabdomere governs the angular sensitivity of fly photoreceptors in the dark-adapted state, but diffraction takes over in the fully light-adapted state.  相似文献   

9.
The eyes of three eye mutants of Drosophila melanogaster were fixed and thin sections studied for its structural detail in the electron microscope. Each ommatidium was found to have seven retinula cells with an equal number of rhabdomeres (visual units). The rhabdomeres average 1.2 micro in diameter and 60 micro in length. Each rhabdomere consists of osmium-fixed dense bands averaging 120 A in thickness, and with less dense interspaces 200 to 400 A. There is an average of 23 dense bands or 46 interfaces per micron within the rhabdomere. The rhabdomere as we have presented it is a single structure of packed rods or tubes. The "fine structure" within the rhabdomere is similar to that observed by electron microscopy for the retinula of the house fly, and to the retinal rods of the vertebrate eye, and to the chloroplasts of plant cells in a variety of animal and plant photoreceptor structures. In addition, the radial arrangements within the ommatidium of radially unsymmetrical units, the rhabdomeres, is probably related to the analysis of polarized light in the insect eye.  相似文献   

10.
Summary The conditions that lead to the formation of myelin figures in rhabdomere microvilli were studied in the larval ocelli of the mosquito Aedes aegypti. These artifacts can result from the addition of divalent ions, such as Ca2+, to primary-aldehyde fixatives, but they form subsequently during postfixation with OsO4. In light-adapted ocelli, myelin figures are concentrated at the proximal ends of the microvilli along the cytoplasmic margin of the rhabdomere. The severity of the artifact is proportional to the ion concentration: scattered myelin whorls are induced by Ca2+ concentrations as low as 5 mM; they become abundant at 15 mM to 25 mM, and displace much of the rhabdomere margin at 50 mM. In contrast, even at high concentrations of Ca2+ few membrane whorls form in dark-adapted rhabdomeres, and these are mostly located at the distal ends of the microvilli. The differential response of the rhabdomere microvilli in light and darkness does not result from a direct action of light during fixation; it reflects an underlying difference between light- and dark-adapted photoreceptor membranes. We suggest that this differential sensitivity to divalent ions is associated with the shedding of membranes from the rhabdomere, a process that is enhanced by light and reduced in darkness.This work was supported by a grant (BNS 76-18623) from the National Science Foundation  相似文献   

11.
Horridge GA 《Tissue & cell》1969,1(3):425-442
The eye of Dytiscus (Coleoptera) has rhabdomeres at three different levels. The crystalline threads stretch from the ends of the crystalline cones only as far as the distal layer of rhabdomeres. There is one distal rhabdo-mere per ommatidium, and in this system the ommatidia are anatomically separate. Between the distal rhabdomere and the rhabdomeres of the next six retinula cells is a wide clear zone in which light entering by one facet could possibly reach deep rhabdomeres of a different ommatidium. Of the six proximal rhabdomeres, four have rhabdomere tubules which lie horizontal with reference to the normal posture, the other two having vertically oriented tubules. The eighth cell, with nucleus near the basement membrane, has a small rhabdomere. All eight retinula cells have axons and there is no other class of axons in the eye.  相似文献   

12.
The ultrastructure of the ciliary apparatus of multiciliated epidermal cells in larval and adult sipunculids is described and the phylogenetic implications discussed. The pelagosphera of Apionsoma misakianum has a dense cover of epidermal cilia on the head region. The cilia have a long, narrow distal part and two long ciliary rootlets, one rostrally and one vertically orientated. The adult Phascolion strombus has cilia on the nuchal organ and on the oral side of the tentacles. These cilia have a narrow distal part as in the A. misakianum larva, but the ciliary rootlets have a different structure. The first rootlet on the anterior face of the basal body is very short and small. The second, vertically orientated rootlet is long and relatively thick. The two ciliary rootlets present in the larval A. misakianum are similar to the basal metazoan type of ciliary apparatus of epidermal multiciliated cells and thus likely represent the plesiomorphic state. The minute first rootlet in the adult P. strombus is viewed as a consequence of a secondary reduction. No possible synapomorphic character with the phylogenetically troublesome Xenoturbella was found.  相似文献   

13.
PHOTORECEPTOR STRUCTURES : III. DROSOPHILA MELANOGASTER   总被引:2,自引:6,他引:2       下载免费PDF全文
The eyes of three eye mutants of Drosophila melanogaster were fixed and thin sections studied for its structural detail in the electron microscope. Each ommatidium was found to have seven retinula cells with an equal number of rhabdomeres (visual units). The rhabdomeres average 1.2 µ in diameter and 60 µ in length. Each rhabdomere consists of osmium-fixed dense bands averaging 120 A in thickness, and with less dense interspaces 200 to 400 A. There is an average of 23 dense bands or 46 interfaces per micron within the rhabdomere. The rhabdomere as we have presented it is a single structure of packed rods or tubes. The "fine structure" within the rhabdomere is similar to that observed by electron microscopy for the retinula of the house fly, and to the retinal rods of the vertebrate eye, and to the chloroplasts of plant cells in a variety of animal and plant photoreceptor structures. In addition, the radial arrangements within the ommatidium of radially unsymmetrical units, the rhabdomeres, is probably related to the analysis of polarized light in the insect eye.  相似文献   

14.
Drosophila photoreceptors (R cells) are an extreme instance of sensory membrane amplification via apical microvilli, a widely deployed and deeply conserved operation of polarized epithelial cells. Developmental rotation of R cell apices aligns rhabdomere microvilli across the optical axis and enables enormous membrane expansion in a new, proximal distal dimension. R cell ectoplasm, the specialized cortical cytoplasm abutting the rhabdomere is likewise enormously amplified. Ectoplasm is dominated by the actin-rich terminal web, a conserved operational domain of the ancient vesicle-transport motor, Myosin V. R cells harness Myosin V to move two distinct cargoes, the biosynthetic traffic that builds the rhabdomere during development, and the migration of pigment granules that mediates the adaptive "longitudinal pupil" in adults, using two distinct Rab proteins. Ectoplasm further shapes a distinct cortical endosome compartment, the subrhabdomeral cisterna (SRC), vital to normal cell function. Reticulon, a protein that promotes endomembrane curvature, marks the SRC. R cell visual arrestin 2 (Arr2) is predominantly cytoplasmic in dark-adapted photoreceptors but on illumination it translocates to the rhabdomere, where it quenches ongoing photosignaling by binding to activated metarhodopsin. Arr2 translocation is "powered" by diffusion; a motor is not required to move Arr2 and ectoplasm does not obstruct its rapid diffusion to the rhabdomere.  相似文献   

15.
16.
The translocation of dynein along microtubules is the basis for a wide variety of essential cellular movements. Dynein was first discovered in the ciliary axoneme, where it causes the directed sliding between outer doublet microtubules that underlies ciliary bending. The initiation and propagation of ciliary bends are produced by a precisely located array of different dyneins containing eight or more different dynein heavy chain isoforms. The detailed clarification of the structural and functional diversity of axonemal dynein heavy chains will not only provide the key to understanding how cilia function, but also give insights applicable to the study of non-axonemal microtubule motors.  相似文献   

17.
The nervous system development of the sea cucumber Stichopus japonicus was investigated to explore the development of the bilateral larval nervous system into the pentaradial adult form typical of echinoderms. The first nerve cells were detected in the apical region of epidermis in the late gastrula. In the auricularia larvae, nerve tracts were seen along the ciliary band. There was a pair of bilateral apical ganglia consisted of serotonergic nerve cells lined along the ciliary bands. During the transition to the doliolaria larvae, the nerve tracts rearranged together with the ciliary bands, but they were not segmented and remained continuous. The doliolaria larvae possessed nerves along the ciliary rings but strongly retained the features of auricularia larvae nerve pattern. The adult nervous system began to develop inside the doliolaria larvae before the larval nervous system disappears. None of the larval nervous system was observed to be incorporated into the adult nervous system with immunohistochemistry. Since S. japonicus are known to possess an ancestral mode of development for echinoderms, these results suggest that the larval nervous system and the adult nervous system were probably formed independently in the last common ancestor of echinoderms.  相似文献   

18.
The structure of the eye of Ligia oceanica L   总被引:1,自引:0,他引:1  
Edwards AS 《Tissue & cell》1969,1(2):217-228
There are eight retinula cells in each ommatidium. Two of these cells are half the size of the others, and there is a small basal cell with large vesicles in its cytoplasm but no rhabdomere. The rbabdomeres are separate and the cytoplasm of the basal cell extends into the space between them at the central end. The rhabdomere tubules are regularly arranged at the periphery and irregular at the central end. The extent of irregular arrangement is increased if animal is kept in dark. There are eight axons from each ommatidium.  相似文献   

19.

Background

TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere), TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.

Methodology/Principal Findings

We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.

Conclusions/Significance

Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.  相似文献   

20.
The response of a visual cell in the eye of Limulus is treated mathematically in terms of a model derived from the properties of excitable nerve membranes. Electron microscopic sections of the rhabdomere indicate that its structure is a close-packed array of cylindrical tubules, the interiors of which communicate with the retinula cell cytoplasm, while the external interstitial fluid is a conducting medium continuous with the extracellular space of the ommatidium. If a single highly conducting channel is opened in this membrane structure, it can be shown how the excitation can spread to depolarize the retinula cell by several millivolts. Intense activity of “sodium pumps” in the rhabdomal membrane would be required to maintain the ionic concentrations in the interstitial fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号