首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stimulation of human lymphocytes in mixed leukocyte culture (MLC) with x-irradiated pooled allogeneic normal cells (poolx) was previously shown to result in generation of effector cells cytotoxic for autologous Epstein-Barr virus- (EBV) transformed lymphoblastoid cell lines (LCL). This study was undertaken to determine whether lysis of the autologous EBV- transformed LCL cells by pool-stimulated cells is mediated by cytotoxic Tc lymphocytes (Tc) or natural killer- (NK) like cells, both of which are generated in MLC. In the first series of experiments, proliferating cells were eliminated by treatment of pool-stimulated cells with 5 X 10(-5) M 5-bromodeoxyuridine (BUdR) and light. The remaining cells failed to lyse allogeneic normal lymphocytes and autologous LCL cells, whereas cytotoxicity against NK-sensitive K562 leukemia cells was retained. In the second series of experiments, pool-stimulated effector cells were treated with monoclonal anti-human Tc cell antibodies, OKT3 or OKT8, and complement (C). The cells recovered after antibody and C treatment were diminished in their ability to lyse allogeneic normal lymphocytes as well as autologous LCL cells, whereas their cytotoxicity against K562 leukemia cells was unaffected. These combined results provide strong evidence that lysis of autologous LCL cells by lymphocytes stimulated with pooled allogeneic normal cells is mediated by Tc rather than NK-like cells.  相似文献   

2.
In vitro stimulation of human mononuclear cells with x-irradiated autologous lymphoblastoid cell line (LCL) or allogeneic normal cells in mixed leukocyte cultures (MLC) was previously shown to result in the generation of OKT3+ OKT8+ cytotoxic T lymphocytes (CTL) lytic for allogeneic and autologous LCLs and also of natural killer- (NK) like cells that are OKT3- and primarily OKT8- and are lytic for HLA- NK-sensitive K562 cells. The origin of the NK-like cells was not previously known because, although the majority of fresh human NK cells react with monoclonal antibodies OKM1 and B73.1, lymphocytes bearing these markers are not detected several days after the onset of MLC, when NK-like cells are present. In this study, experiments were undertaken to determine whether NK-like cells generated after stimulation with x-irradiated pooled allogeneic normal cells (poolx) or with autologous LCL are derived from cells expressing antigens reactive with monoclonal antibodies OKM1 or B73.1, which react with fresh NK cells. Mononuclear cells, depleted of monocytes, were stained with OKM1 or B73.1 and fluorescein-labeled goat anti-mouse IgG. Lymphocytes depleted of OKM1+ or B73.1+ cells, by fluorescence-activated cell sorting, and lymphocytes that were stained but not sorted were stimulated for 7 days with either poolx or autologous LCL. The generation of NK-like activity was decreased at least 90% after depletion of cells reactive with OKM1 or B73.1, whereas the generation of CTL against autologous and allogeneic LCL was minimally affected. These findings show that NK-like cells generated in MLC are derived from cells that express the phenotype of fresh NK cells (OKM1+ or B73.1+) and that CTL can be generated in cultures in which relatively little NK-like activity is concomitantly detected, by depleting NK cells with monoclonal antibodies before stimulation.  相似文献   

3.
Lymphocytes, derived from surgically resected lung carcinoid tissue, were stimulated in mixed culture with irradiated autologous tumor cells (MLTC). The autologous MLTC-stimulated lymphocytes were found to have killing activity against both autologous tumor cells and NK-sensitive target cells. The lymphoblasts generated during MLTC were isolated and cloned under limiting dilution conditions in the presence of interleukin 2. The cloned cell lines were analyzed for cell phenotype and tested for cytotoxic activity. Three cloned cell lines, out of 19 tested, were found to be cytotoxic either against NK-sensitive target cells (natural killers) or the autologous tumor cells. Two clones, having OKT8 phenotype, caused no lysis of the autologous tumor cells, though both exerted NK-like activity against K562 cells. Only one clone with OKT4 phenotype showed specific cytotoxic activity against the autologous tumor, but no NK-like activity against a panel of tumor target cells. These results suggest the coexistence of two types of antitumor cytotoxic lymphocytes at the tumor site: precursors of NK-like cells and specific cytotoxic T cells. Target cell specificity provided a means of distinguishing between the two types.  相似文献   

4.
Peripheral blood lymphocytes were cocultivated with irradiated cells of the autologous EB virus-transformed cell line at different responder:stimulator (R:S) ratios and the cytotoxic response was assayed up to 12 days later. In cocultures set up at a R:S ratio of 4:1, the response from both EB virus antibody-positive (seropositive) and negative donors was dominated by a broad-ranging NK-like cytotoxicity which did not segregate within the E-rosette-forming subpopulation of effector cells. In contrast, cocultures set up at a R:S ratio of 40:1 and harvested after 10 to 12 days gave rise, in the case of seropositive donors only, to effector T-cell preparations which appeared to be both EB virus specific and HLA-A and B antigen restricted. Strong lysis of the autologous virus-transformed cell line and demonstrable activity against certain allogeneic HLA-A and/or B antigen-related virus-transformed lines occurred in the absence of any significant killing either of the corresponding lines from HLA-unrelated donors or of a variety of EB virus genome-negative target cells (K562, HSB2, BJAB) particularly sensitive to NK-like cytotoxicity; furthermore, lysis of the autologous cell line by these effector T cells was specifically inhibited by monoclonal antibodies binding to HLA-A, B, and C antigens on the target cell surface. This work demonstrates that an HLA-restricted EB virus-specific cytotoxic T-cell response can indeed be induced in vitro by stimulation of fresh lymphocytes with autologous EB virus-transformed cells providing cocultures are set up at the correct R:S ratio.  相似文献   

5.
Primary infection with EBV during acute infectious mononucleosis (IM) is associated with a cytotoxic response against allogeneic target cells. C depletion with anti-CD3 (OKT3) and anti-CD8 (OKT8) mAb decreased the allogeneic cytolysis of two EBV-infected lymphoblastoid cell lines (LCL) by 96% and 89%, respectively. Complement depletion with the NK cell-specific mAb Leu-11b and NKH-1a resulted in only a slight decrease (less than 35%) in the lysis of these LCL. mAb inhibition studies with OKT3 and OKT8 inhibited the allogeneic lysis of two LCL by 87% and 82%, respectively. The alloreactive cytotoxic response was strongly inhibited by mAb specific for MHC class I determinants (W6/32, 65% inhibition and BBM.1, 58% inhibition). Acute IM lymphocytes lysed the allogeneic EBV-negative cell lines HSB2 (45%) and HTLV-1 T cell lines (16%). NK cell-depleted lymphocytes from an acute IM patient demonstrated preferential lysis of K562 transfected with human HLA-A2 (73%) compared with the K562 transfected control (20%). Cold target competition studies with allogeneic and autologous target and competitor LCL demonstrated no significant competitive inhibition between allogeneic and autologous cells. We interpret these results as evidence that 1) the acute IM-alloreactive cytotoxic response is mediated primarily by CTL; 2) these alloreactive CTL lyse allogeneic target cells irrespective of EBV antigenic expression; 3) MHC class I expression is sufficient for allogeneic recognition and lysis of target cells; 4) distinct effector CTL populations mediate lysis of autologous and allogeneic target cells; and 5) during acute IM, EBV infection results in the induction of both virus-specific and alloreactive CTL populations.  相似文献   

6.
Tumour-infiltrating lymphocytes (TIL) and tumours from six patients with squamous cell carcinomas of the head and neck (SCCHN) were investigated. The six tumours all expressed major histocompatibility complex (MHC) class I antigens both in vivo and as tumor cell lines grown in vitro. In addition, the cancer cells either overexpressed the tumour-suppressor gene product p53 or harboured human papilloma virus 16/18 (HPV). The TIL were expanded in vitro in the presence of interleukin-2, immobilised anti-CD3 mAb and soluble anti-CD28 mAb. Expanded TIL cultures contained both CD4+and CD8+T cells, but generally contained few CD56+CD3-cells of the natural killer (NK) phenotype. CD8+T cells dominated the individual TIL cultures from five of the six patients and showed significant autologous tumour cell lysis. In TIL cultures derived from four of these tumour-reactive TIL cultures, killing could be partially blocked by an anti-MHC class I mAb. TIL cultures reacting with autologous tumour cells also showed strong TCR/CD3-redirected cytotoxicity when assayed against hybridoma cells expressing anti-TCR/CD3 mAb as well as natural-killer(NK)-like activity. A number of TIL cultures devoid of autologous tumour cell lysis were capable of lysing the natural-killer(NK)-sensitive K562 cell line suggesting that the SCCHN cells themselves are resistant to NK-like lysis. In conclusion, TIL cultures from head and neck carcinomas contain T cells which, upon expansion in vitro, can lyse autologous tumour cells in a MHC-class-I-restricted fashion. Thus, the results of the present study document that carcinomas of the head and neck in some patients are infiltrated by cytotoxic T cell precursors potentially capable of rejecting the autologous tumour.  相似文献   

7.
J Koide 《Human cell》1990,3(3):220-225
We recently generated a series of human alloantigen-specific, CD3+, gamma delta- TCR+ clones by stimulating CD3+, CD4-, CD8- T cells from normal individuals with allogeneic lymphoblastoid cell lines (LCL). These clones display cytotoxic activity against their specific stimulators but not against irrelevant LCL. Most but not all of these clones express the NK cell associated marker, CD57, and kill NK-sensitive targets such as the K562 and Molt 4 lines, but not NK-resistant line, Raji. Gamma delta clones which lacked expression of CD57 had no detectable NK activity. The allospecific cytotoxicity of CD57+ and CD57- clones was inhibited by mAb to CD3 or the TCR delta- chain. In contrast, the NK-like activity of the CD57+ clones was enhanced by these antibodies over a wide range of antibody concentration. An HLA class I framework-specific mAb had no effect on NK-like cytolysis but did inhibit allospecific killing, suggesting that the target structures on the surface of allospecific and NK-sensitive cells are distinct. The receptors utilized by the gamma delta- TCR+ clones to recognize NK-sensitive and allospecific targets are also distinct, since killing of NK-sensitive targets was blocked by the presence of cold (unlabeled) NK-sensitive cells but not by cold allospecific targets, whereas allospecific cytolysis was inhibited by cold allospecific targets but not by NK-sensitive cells. We conclude that some CD3+, TCR- gamma delta+ clones exhibit NK-like as well as allospecific killing and that these two activities are mediated by distinct receptor-ligand interactions.  相似文献   

8.
We recently generated a series of human alloantigen-specific, CD3+,TCR-gamma,delta+ clones by stimulating CD3+,CD4-,CD8- T cells from normal individuals with allogeneic lymphoblastoid cell lines (LCL). As reported previously, these clones display cytotoxic activity against their specific stimulators but not against irrelevant LCL. Further studies of these and other TCR-gamma,delta+ clones, described in this report, indicate that most but not all of these clones express the NK cell associated marker, NKH-1 or Leu-19, and kill NK-sensitive targets such as the K562 and Molt 4 lines, but not an irrelevant LCL or NK-resistant line, Raji. TCR-gamma,delta+ clones which lacked expression of Leu-19 lysed their allospecific targets but had no detectable NK activity. The allospecific cytotoxicity of Leu-19+ and Leu-19- clones was inhibited by mAb to CD3 or the TCR delta-chain. In contrast, the NK-like activity of the Leu-19+ clones was enhanced by these antibodies over a wide range of antibody concentration. Although mAb to LFA-1 markedly inhibited both the allospecific and NK-like activity of these clones, an HLA class I framework specific mAb (W6/32) had no effect on NK-like cytolysis but did inhibit allospecific killing, suggesting that the target structures on the surface of allospecific and NK-sensitive cells are distinct. The receptors utilized by the TCR-gamma,delta+ clones to recognize NK-sensitive and allospecific targets are also distinct, since killing of NK-sensitive targets was blocked by the presence of cold (unlabeled) NK-sensitive cells but not by cold allospecific targets, whereas allospecific cytolysis was inhibited by cold allospecific targets but not by NK-sensitive cells. We conclude that some CD3+,TCR-gamma,delta+ clones exhibit NK-like as well as allospecific killing and that these two activities are mediated by distinct receptor-ligand interactions.  相似文献   

9.
Cloned T cell lines from mixed lymphocyte cultures stimulated with autologous Epstein Barr virus- (EBV) transformed lymphoblastoid cell line (LCL) cells were established using a limiting dilution technique in the presence of T cell growth factor (TCGF). The T cell lines included two distinct clones of cytotoxic T cells (Tc) in addition to EBV-specific Tc. A cytotoxic profile of one cloned line was similar to that of endogenous NK cells in peripheral blood. The other cloned Tc line showed an anti-human cytotoxicity. The susceptible targets for this latter Tc line were various human cells, including autologous LCL and peripheral blood lymphocytes (PBL), stimulated with pokeweed mitogen, along with NK-sensitive and NK-resistant cell lines. Weak cytotoxic activity was detected against various xenogeneic cell lines. Furthermore, autologous and allogeneic cloned T cell lines were resistant to killing by the anti-human effector clone. These t wo distinct cloned Tc lines expressed the Leu-1 and Leu-2a antigens, which are markers of suppressor/cytotoxic T cells.  相似文献   

10.
The growth factor transferrin (Tf) enhanced natural killer (NK) cell cytotoxicity. This enhancement was due to direct effects on NK cell function, and Tf treatment of the K562 target cell had no effect on their sensitivity. NK cells were highly enriched in the low-density large granular lymphocyte population (LGL) by Percoll gradient centrifugation. Despite the direct effect of Tf on NK cells, the number of cells expressing receptors for Tf (TfR) in NK-enriched LGL was the same as the NK-cell-depleted high-density small lymphocyte population (SL). All populations, tested without stimulation, had very few TfR+ cells. Interleukin 2 (IL-2) could induce very high NK-like activity in the LGL but not in SL. Similarly, only LGL could be induced by IL-2 to express TfR. In serum-free cultures, only limited NK-like activity could be developed which was greatly enhanced by supplementing with Tf in the cultures. The importance of Tf in NK-like development was confirmed by modulating the expression of TfR in IL-2 containing cultures with mouse monoclonal antibody OKT9 specific for TfR. OKT9 totally abrogated the induction of cytotoxic activity by IL-2 against K562 and NK-resistant target. OKT9 inhibited the induction of cytotoxicity in both lymphocytes containing active NK cells and in those predepleted of active NK cells, indicating that the development of NK-like activity from both precursor populations requires Tf. The inhibition by OKT9 was only during the induction phase. The same antibody had no effect on the cytotoxicity of fresh NK cells or the mature IL-2-induced NK-like cells. Our data therefore do not support the hypothesis of TfR as the NK recognition structure. Instead, these results indicate that Tf is important for the development of NK and NK-like activities.  相似文献   

11.
In contrast to general findings that mouse and human cytotoxic T lymphocytes (CTL) are restricted in cytotoxic activity by major histocompatibility complex (MHC) class I antigens, we previously found that some herpes simplex virus (HSV) type I-infected cells that shared no HLA class I antigens with the HSV-1-stimulated lymphocytes were lysed. In this study, we addressed the question of the role of HLA antigens in human T cell-mediated lysis of HSV-1-infected cells by generating clones of HSV-1-directed CTL from two HSV-1-seropositive individuals. CTL clones that lysed autologous HSV-1-infected lymphoblastoid cell lines (LCL), but not natural killer-sensitive K562 cells or uninfected or influenza virus-infected LCL, were tested for cytotoxicity against a panel of allogeneic HSV-1-infected LCL. Clone KL-35 from individual KL lysed only HSV-1-infected LCL sharing the HLA class II MB1 antigen with KL. With all four CTL clones isolated from individual PM, only HSV-1-infected LCL sharing DR1 with PM were lysed. Monoclonal antibody s3/4 (directed against MB1 ), but not TS1/16 or B33 .1 (directed against a DR framework determinant), blocked lysis of autologous HSV-1-infected cells by KL-35. In contrast, B33 .1, but not s3/4, blocked lysis of autologous HSV-1-infected cells by the PM CTL clones but not by KL-35. Together, these results indicate that our five human CTL clones which are directed against HSV-1-infected cells, and which are all OKT3+, OKT4+, OKT8-, are restricted in lytic activity by HLA class II MB and DR antigens. These results suggest that the HLA D region-encoded class II antigens may be important in the recognition and destruction of virus-infected cells by human CTL.  相似文献   

12.
An in vitro culture and assay system was used to determine whether cytotoxic lymphocytes are generated in humans after rickettsial infection. Peripheral blood mononuclear cells (PBMC) were obtained from six individuals with serologic evidence of prior infection with typhus group rickettsiae and from six nonimmune individuals. After PBMC from immune individuals were stimulated in vitro for 7 days with rickettsial antigen, they were capable of lysing typhus group rickettsia-infected, autologous phytohemagglutinin (PHA)-induced blasts, but not uninfected PHA-blasts. No cytotoxic effector cells were generated when either PBMC from immune individuals were placed in culture for 7 days without antigenic stimulation, or when PBMC from nonimmune individuals were stimulated in vitro with antigen for 7 days. Freshly isolated PBMC from immune donors were also unable to lyse typhus group rickettsia-infected autologous PHA-blasts or an autologous rickettsia-infected lymphoblastoid cell line (LCL). Neither supernatants from antigen-stimulated cultures of PBMC from immune donors nor recombinant human interferon-gamma were capable of significantly lysing typhus group rickettsia-infected PHA blasts by this assay. Populations of cytotoxic effector cells depleted of OKT3, OKT4, or OKT8-positive cells by treatment with the respective monoclonal antibodies and complement were assayed for their cytotoxic capacity. The results suggest that the cytotoxic effector cell population is predominantly OKT3 and OKT8-positive, but OKT4-negative. Positive selection with the use of a fluorescence-activated cell sorter also suggested that most of the cytotoxic effector cells are OKT8-positive. PBMC from immune donors after in vitro stimulation with rickettsial antigen were capable of significantly lysing infected autologous LCL or infected HLA-mismatched LCL as compared with the respective uninfected controls. In addition, PBMC from either immune donors or nonimmune donors after stimulation in vitro for 7 days with media containing purified lymphokines were capable of significantly lysing autologous infected LCL as compared with the uninfected autologous control. We conclude that lysis of cells infected with typhus group rickettsiae is mediated by a lymphokine-activated killer.  相似文献   

13.
Human cytotoxic T cell clones (CTL) were obtained by limiting dilution after in vitro priming against an allogeneic Epstein Barr virus (EBV)-transformed B cell line (B-LCL) BSM. Three OKT3+, OKT8+ E rosette-forming (RFC) but EA gamma-RFC- clones with cytotoxic activity against the stimulator cell and one "non-cytolytic" clone were expanded for over 50 generations and further characterized. Clone G9 showed allospecific lysis of Cw3+ lymphocytes and B cell lines. Three cytolytic clones (G9, D11, and A3) showed cytotoxicity to the stimulator B-LCL, to the human plasma cell leukemia-derived line LICR-LON-HMY2 and to short-term cultured melanoma cells (O-mel). Four other EBV-transformed B-LCL unrelated to the stimulator B-LCL were not lysed. These clones also exerted cytotoxic activity against NK-sensitive target cells (TC), e.g., the erythroleukemia cell line K562. Other NK-sensitive TC, e.g., lymphoma-derived Daudi cells, were killed provided they were pretreated with phytohemagglutinin (PHA). Cytolytic activity against the B-LCL cell LICR-LON and O-mel, but not against K562 or PHA-treated target cells, was inhibited by monoclonal anti-HLA ABC antibodies (MCA). The cytolytic activities of OKT3+,8+ clones G9 and A3 but not that of OKT3+,8+ clone D11 were inhibited by OKT8. Another MCA, 13.3, directed against the murine glycoprotein T-200, inhibited the cytolytic activity of clone D11 against K562 but not against the stimulator cells. Clone G9 was not inhibited by MCA 13.3. The four clones, including the OKT4+ "non-cytotoxic" clone K12, exerted lytic activity against TC that are normally resistant to lysis provided these TC were pretreated with PHA. The TC specificity range of the clones was confirmed by cold target inhibition experiments. A correlation between blocking of lytic activity by cold TC and the percentage of conjugate formation with the particular cold TC was observed. Because these clones also show differential susceptibility to inhibition of lysis by various MCA, it is concluded that human cytotoxic T cell clones can exert multiple lytic activities, i.e., the operationally defined lytic mechanisms differ at least at certain stages of the lytic cycle.  相似文献   

14.
Analysis of cellular immune response to EBV by using cloned T cell lines   总被引:9,自引:0,他引:9  
Eight cloned T cell lines specific for Epstein Barr virus-transformed B lymphocytes were derived. In the presence of the autologous virus-infected B cells, the T cell lines show HLA-restricted cytotoxic activity and also secrete alpha-interferon in sufficient amounts to inhibit infection and transformation. Four of these clones showed restriction to a single HLA locus (two for A3, and two for B7) and three showed exquisite self-restriction lysing only autologous targets. These seven clones expressed the classical cell surface phenotype of cytotoxic T cells being T3, 8, 11, and la-positive and T4-negative. An eighth clone that lacked the T8 surface marker appeared to recognize both B7 and BW51. HLA restriction was confirmed: 1) by the ability of a monoclonal antibody against an HLA-A,B,C framework antigen (W6-32) to block the cytotoxicity; 2) the failure of the clones to lyse Daudi, an EBV-positive, HLA-A,B, C-negative cell line; and 3) successful competition of the cytotoxicity by autologous but not allogeneic cold targets. The cloned T cells do not kill EBV-negative targets such as autologous pokeweed mitogen blasts and cell lines including CEM and the natural killer cell target K562. The results suggest T cell clones may be generated against an EBV-associated membrane antigen on transformed B cells, perhaps equivalent to the lymphocyte-determined membrane antigen, and that the recognition is restricted by a single HLA determinant. We propose that single T cells can play multiple roles in controlling EBV infection in vitro and in vivo including the elimination of transformed cells by cytotoxicity and the prevention by secreted interferon of further re-infection and transformation.  相似文献   

15.
Human peripheral blood lymphocytes (PBL) exhibited spontaneous cytotoxicity against OKT3 monoclonal antibody (mAb)-expressing murine hybridoma cells (OKT3 hybridomas). In contrast, other murine hybridomas expressing OKT4, OKT8, anti-HLA DR, and anti-HLA A, B, and C mAb were not lysed. PBL showed much lower levels of cytotoxicity (3 folds) against OKT3 hybridomas as compared with NK activity against the K562 targets. Lymph node (LN) cells exhibited the inverse relationship of cytotoxicity levels. The addition of OKT3 mAb to the effector cells totally blocked both the binding and the lysis of OKT3 hybridoma targets, indicating that the CD3 antigen on the effector cells may be involved in recognition of the targets. The addition of concanavalin (Con A) also inhibited the cytotoxicity of OKT3 hybridomas. OKT4 mAb-expressing hybridomas became susceptible to lysis after chemical attachment of OKT3 mAb with CrCl3. The kinetics of lysis of OKT3 hybridomas resembled that of NK activity. Both cytotoxicities were detectable after 1 to 2 hr and reached plateau levels by 4 to 6 hr. Effector cells responsible for lysis of OKT3 hybridomas expressed T3, T8, and Leu 7 antigens, but lacked T4 and Leu 11b antigens, and were sensitive to the treatment with L-leucine methyl ester. These results indicate that T3+, T8+, Leu 7+ and T4-, and Leu 11- granular lymphocytes have a spontaneous cytotoxic activity against OKT3 hybridomas which is different from classic NK activity. These findings may provide a method for the assessment of T-cell cytotoxicity mediated presumably by in vivo generated cytotoxic T lymphocytes in blood and the other immune organs.  相似文献   

16.
Human cell lines maintained by in vitro stimulation with the HLA-A, B-negative, DR-positive, Epstein Barr virus-transformed, lymphoblastoid cell line Daudi in the presence of conditioned medium demonstrated significant NK activity for over 6 wk in continuous culture. These cells lyse K562 and a broad panel of lymphoblastoid cell lines but do not lyse normal peripheral blood lymphocytes or pokeweed mitogen blasts. They possess the sheep red blood cell receptor but lack other T cell markers (Lyt-3+, OKT3-). Natural killer activity correlated with the presence of a Mac 1-positive subpopulation of cells present in these long-term lines.  相似文献   

17.
Tumor-infiltrating lymphocytes (TIL) were obtained from human ovarian tumors, expanded in the presence of IL-2 in culture and studied for cytotoxicity against fresh autologous and allogeneic ovarian carcinoma (CA) targets. TIL from ovarian tumors grew well in long term cultures, achieving from 8- to 682-fold expansion. TIL cultured with IL-2 were cytotoxic against both autologous and allogeneic fresh ovarian CA targets, and no specificity for autologous tumor could be demonstrated in any of the cultures. In all fresh TIL preparations, CD3+ lymphocytes were the major cell type and contained a high proportion (up to 51%) of activated (IL-2R+) cells as determined by two-color flow cytometry. Sorting of bulk TIL cultures followed by cytotoxicity assays identified the Leu-19+ cells, both CD3+ and CD3-, as effectors of cytotoxicity against autologous and allogeneic tumor cell targets. Cold target inhibition assays showed that allogeneic targets (both ovarian CA and a sarcoma) competed effectively with autologous ovarian CA targets for Leu-19+ effectors in TIL cultures. mAb to Leu-19 or Leu-2a did not block lysis of autologous targets by sorted effectors. OKT3 antibody augmented lysis of autologous targets by CD3+Leu-19- effectors only. These results show that non-MHC-restricted Leu-19+ effectors in cultures of TIL with 1000 U/ml of rIL-2 mediate lysis of autologous and allogeneic tumor cells. The CD3+Leu-19- cells, the main population in these cultures, do not mediate tumor lysis. To determine the phenotype of antitumor effectors in IL-2 cultures of TIL, cell sorting followed by functional assays are necessary.  相似文献   

18.
The susceptibility of human neuroblastoma cells to direct cellular cytotoxicity has not been previously established. This is of particular interest because of their aggressive growth and low HLA expression. Neuroblastoma lines CHP 100 and CHP 126 were found to be excellent targets in 4-hr CML assays. Natural killer (NK) cells from fresh PBL and from an NK clone, 3.3, have high lytic activity against both cell lines. We also studied mixed lymphocyte culture-generated cytotoxic lines containing allo-specific cytotoxic T lymphocytes (CTL) directed against HLA antigens present on the neuroblastoma target cell lines. These lines did show excellent lytic activity, but cold target competition studies indicated that all of the lysis resulted from NK activity. This was verified by using inhibition studies with the use of monoclonal antibodies. OKT 3 and anti-HLA antibodies that block CTL function caused no reduction in kill. In contrast, anti-lymphocyte function antigen-1 (anti-LFA-1), which blocks both NK and CTL function, significantly inhibited lysis. These results serve as a functional confirmation of earlier findings of a very weak expression of HLA-A,B,C and beta 2-microglobulin on neuroblastoma cells.  相似文献   

19.
Interleukin 2-dependent cloned lymphocytes derived from an allogeneic HLA class II-mismatched but class I-matched mixed lymphocyte culture were screened for cytotoxic activity on target cell lines known to be susceptible or resistant to lysis by natural killer (NK) cells. Of 24 clones, eight were found to display NK-like cytotoxicity. Two manifested extremely high cytotoxicity levels (50% lysis of K562 at an effector to target ratio of 1:1), whereas the remainder were only moderately active (about 20% lysis at 25:1). NK-like clones were studied with regard to cell surface markers defined by monoclonal antibodies, as well as for their morphologic and cytochemical characteristics, and were compared with clones displaying different functions. The moderately active NK-like clones exhibited characteristic large granular lymphocyte morphology (many azurophilic granules, indented nuclei, high cytoplasm to nucleus ratio, and a basophilic peripheral cytoplasmic zone). This was, however, also characteristic of the majority of lymphocyte clones displaying functions other than NK. Surprisingly, the two clones with high NK-like activity did not exhibit large granular lymphocyte morphology, with few granules, round nuclei, and low cytoplasm to nucleus ratio. The T3, T9, T10, and T11 markers, as well as HLA-DR determinants, were expressed on their surfaces, but in contrast to the other clones, they did not display OKT4-, OKT8-, or OKM1-defined antigens. No distinction between them was possible on the basis of a cytochemical profile in relation to their function, because all clones were positive for acid phosphatase, either focal or dispersed and negative for nonspecific esterase or chloracetate esterase. The highly active lytic clones were, however, distinguished by an exceptionally rapid growth rate in culture (cell doubling time: 9 hr as compared to 30 to 40 hr, as usually required). These results demonstrate two different types of human NK-active lymphocytes with remarkably disparate lytic capacity, cell surface markers, and morphology.  相似文献   

20.
Summary Lymphocytes isolated from the blood of TCC patients, like those of control patients, were capable of mediating spontaneous cell-mediated cytotoxicity against K-562 cells. When this natural cytotoxicity was analyzed with regard to the effector cell type it was found that in TCC patients the SLMC was mostly displayed by E-rosetting T lymphocytes, whereas compared with controls, a significant decline in the SLMC of the non-T lymphocytes was observed. The SLMC of the T lymphocytes derived from TCC patients was further demonstrated on a T leukemia target cell (Peer). When the SLMC on K-562 and on Peer target cells was compared, a specificity difference was observed between TCC and the control patients' effector cells. The SLMC activity of the TCC patients' T cells was not abolished after depletion of Fc receptor-positive cells or following treatment with monoclonal antibodies OKT 8 or OKT 4 and complement (C'). These NK-like cells are therefore distinguished from cytotoxic T lymphocytes and NK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号