首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast Saccharomyces cerevisiae was used to express a medically relevant G-protein coupled receptor (GPCR), the human adenosine (A2a) receptor, with a C-terminal green fluorescent protein (GFP) fusion tag. In prior studies, we established an expression system for A2a-GFP. Here, we quantified the total A2a-GFP expression levels by correlating GFP levels as detected by fluorescence and densitometry to A2a-GFP molecules overexpressed in the system. We also quantified A2a-GFP functional levels by classical radioligand binding assays. Approximately, 120,000 functional A2a-GFP molecules per cell were present on the plasma membrane as determined by radioligand binding. Using whole cell GFP fluorescence, 340,000 A2a-GFP molecules per cell were detected; approximately 70% of those molecules were plasma membrane localized, as determined by using confocal microscopy analysis. These results show that a significant portion of the total expressed protein is functional. In addition, the quick and inexpensive whole cell fluorescence appears to provide a good approximation of functional receptor numbers for this case. Importantly, the amount of functionally expressed A2a-GFP per culture ( approximately 4 mg/L) is among the highest reported for any GPCR in any expression system.  相似文献   

2.
Screening of protein variants requires specific detection methods to assay protein levels and stability in crude mixtures. Many strategies apply fluorescence‐detection size‐exclusion chromatography (FSEC) using green fluorescent protein (GFP) fusion proteins to qualitatively monitor expression, stability, and monodispersity. However, GFP fusion proteins have several important disadvantages; including false‐positives, protein aggregation after proteolytic removal of GFP, and reductions in protein yields without the GFP fusion. Here we describe a FSEC screening strategy based on a fluorescent multivalent NTA probe that interacts with polyhistidine‐tags on target proteins. This method overcomes the limitations of GFP fusion proteins, and can be used to rank protein production based on qualitative and quantitative parameters. Domain boundaries of the human G‐protein coupled adenosine A2a receptor were readily identified from crude detergent‐extracts of a library of construct variants transiently produced in suspension‐adapted HEK293‐6E cells. Well expressing clones of MraY, an important bacterial infection target, could be identified from a library of 24 orthologs. This probe provides a highly sensitive tool to detect target proteins to expression levels down to 0.02 mg/L in crude lysate, and requires minimal amounts of cell culture.  相似文献   

3.
Human interleukin-2 (hIL-2) production in Escherichia coli and insect cell/baculovirus expression systems can be inefficient. Here we investigated secreted production of hIL-2 fused with green fluorescent protein (GFP) as a versatile fusion partner in optimized stably transfected insect Drosophila melanogaster S2 cells. This nonlytic S2 insect cell expression system employs a plasmid vector and allows for secretion of functional human proteins. We report that, following stable transfection and induction, S2 cells secreted hIL-2 as a fusion protein (approximately 2.3 microg/mL yield), with a secretion efficiency of approximately 90%. Regression analysis indicated a single linear relationship existed between GFP fluorescence and hIL-2 mass in both whole cell and secreted medium samples, indicating that in vivo monitoring and quantification of target foreign protein expression and even secretion is possible using this system. The simple comparative measurement of GFP fluorescence also allowed monitoring of secretion efficiency during periods of high GFP/hIL-2 expression.  相似文献   

4.
Hribar G  Smilović V  Zupan AL  Gaberc-Porekar V 《BioTechniques》2008,44(4):477-8, 480, 482 passim
In modern production of protein biopharmaceuticals, a good screening and selection method of high-producing clones can dramatically influence the whole production process and lead to lower production costs. We have created a rapid, simple, and inexpensive method for selecting high-producing clones in the yeast Pichia pastoris that is based on the beta-lactamase reporter system. By integrating the reporter gene and the gene of interest into the same genome locus, it was possible to use beta-lactamase activity as a measure of the expression level of the protein of interest. A novel expression vector with two independent expression cassettes was designed and tested using green fluorescent protein (GFP) as a model. The first cassette contained the GFP gene under the control of a strong, inducible AOX1 promoter, while the second cassette consisted of the beta-lactamase reporter gene under the control of a weak constitutive YPT1 promotor. High-producing GFP clones were selected directly on the plates based on the color change after hydrolysis of the beta-lactamase substrate added to the medium. beta-lactamase activity was found to positively correlate with GFP fluorescence. The reporter system described is widely applicable-it can be easily applied to other, also pharmaceutically relevant proteins and to other yeast expression systems, such as Saccharomyces cerevisiae and Hansenula polymorpha.  相似文献   

5.
Medina-Kauwe LK  Leung V  Wu L  Kedes L 《BioTechniques》2000,29(3):602-4, 606-8, 609
We have developed a simple scheme for characterizing ligand-receptor binding and post-binding activity on living cells. Our approach makes use of green fluorescent protein (GFP) as an auto-fluorescent tag to label protein ligands. We have constructed GFP-tagged ligands that can be expressed in bacteria as soluble fusion proteins. A cell-binding assay using fluorescence-activated cell sorting (FACS) demonstrates that GFP-tagged proteins retain their wild-type receptor-binding specificity. Using this assay, we measure ligand binding on unfixed cells and demonstrate receptor specificity using specific competitors. To determine the ability of receptor targets to internalize, we developed a second FACS-based assay to detect the rate and percentage of internalized ligand in living cells. Noninternalizing control ligands and fluorescence microscopy of treated cells confirm that our assay is reliable for determining receptor internalization activity.  相似文献   

6.
To enable large-scale antibody production, the creation of a stable, high producer cell line is essential. This process often takes longer than 6 months using standard limited dilution techniques and is very labor intensive. The use of a tri-cistronic vector expressing green fluorescent protein (GFP) and both antibody chains, separated by a GT2A peptide sequence, allows expression of all proteins under a single promotor in equimolar ratios. By combining the advantages of 2A peptide cleavage and single cell sorting, a chimeric antibody-antigen fusion protein that contained the variable domains of mouse IgG with a porcine IgA constant domain fused to the FedF antigen could be produced in CHO-K1 cells. After transfection, a strong correlation was found between antibody production and GFP expression (r = 0.69) using image analysis of formed monolayer patches. This enables the rapid selection of GFP-positive clones using automated image analysis for the selection of high producer clones. This vector design allowed the rapid selection of high producer clones within a time-frame of 4 weeks after transfection. The highest producing clone had a specific antibody productivity of 2.32 pg/cell/day. Concentrations of 34 mg/L were obtained using shake-flask batch culture. The produced recombinant antibody showed stable expression, binding and minimal degradation. In the future, this antibody will be assessed for its effectiveness as an oral vaccine antigen.  相似文献   

7.
Meng YG  Liang J  Wong WL  Chisholm V 《Gene》2000,242(1-2):201-207
Mammalian cells are often used for the expression of recombinant proteins. The process of screening transfected cells randomly for high producing clones is tedious and time consuming. We evaluated using green fluorescent protein (GFP) for selection of high producing clones by fluorescence-activated cell sorter (FACS) to reduce screening effort. We expressed neurotrophin-3 (NT3), deoxyribonuclease (DNase), or vascular endothelial growth factor (VEGF) with GFP in Chinese hamster ovary cells. The vector expressed the desired secreted protein and the selectable marker, dihydrofolate reductase, in one expression unit and the intracellular GFP in a second expression unit. Transfected cells were grown in selection medium and sorted by FACS. High fluorescence clones were obtained and found to produce high amounts of the desired protein; VEGF productivity correlated well with GFP fluorescence in 48 clones. Further studies demonstrated that productivity correlated very well with RNA of the desired protein. For comparison, we randomly picked and screened 144 VEGF clones, and the highest producing VEGF clone obtained produced 0.7 pg/cell/day. In contrast, the highest producing VEGF clone obtained by FACS sorting produced 4.4 pg/cell/day. FACS sorting therefore selected high producing clones efficiently. Since an assay for the desired protein is not required, high producing clones for a protein of unknown function can be obtained by FACS sorting followed by measuring the RNA level of the desired protein in the highly fluorescent clones.  相似文献   

8.
The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further investigation.  相似文献   

9.
We have investigated the existence of a precoupled form of the distal C-terminal truncated cannabinoid receptor 1 (CB1-417) and heterotrimeric G proteins in a heterologous insect cell expression system. CB1-417 showed higher production levels than the full-length receptor. The production levels obtained in our expression system were double the values reported in the literature. We also observed that at least the distal C-terminus of the receptor was not involved in receptor dimerization, as was predicted in the literature. Using fluorescence resonance energy transfer, we found that CB1-417 and Galpha(i1)beta(1)gamma(2) proteins were colocalized in the cells. GTPgammaS binding assays with the Sf9 cell membranes containing CB1-417 and the G protein trimer showed that the receptor could constitutively activate the Galpha(i1) protein in the absence of agonists. A CB1-specific antagonist (SR 141716A) inhibited this constitutive activity of the truncated receptor. We found that the CB1-417/Galpha(i1)beta(1)gamma(2) complex could be solubilized from Sf9 cell membranes and coimmunoprecipitated. In this study, we have proven that the receptor and G proteins can be coexpressed in higher yields using Sf9 cells, and that the protein complex is stable in detergent solution. Thus, our system can be used to produce sufficient quantities of the protein complex to start structural studies.  相似文献   

10.
Recombinant human adenovirus (rhAd) has been used extensively for functional protein expression in mammalian cells including those of human and nonhuman origin. High-level protein production by rhAd vectors is expected in their permissive host cells, such as the human embryonic kidney 293 (HEK293) cell line. This is attributed primarily to the permissiveness of HEK293 to rhAd infection and their ability to support viral DNA replication by providing the missing El proteins. However, the HEK293 cells tend to suffer from cytopathic effect (CPE) as a result of virus replication. Under these circumstances, the host cell function is compromised and the culture viability will be reduced. Consequently, newly synthesized polypeptides may not be processed properly at posttranslational levels. Therefore, the usefulness of HEK293 cells for the expression of complex targets such as secreted proteins could be limited. In the search for a more robust cell line as a production host for rhAd expression vectors, a series of screening experiments was performed to isolate clones from Chinese hamster ovary-K1 (CHO-K1) cells. First, multiple rounds of infection of CHO-K1 cells were performed utilizing an rhAd expressing GFP. After each cycle of infection, a small population of CHO cells with high GFP levels was enriched by FACS. Second, individual clones more permissive to human adenovirus infection were isolated from the highly enriched subpopulation by serial dilution. A single clone, designated CHO-K1-C5, was found to be particularly permissive to rhAd infection than the parental pool and has served as a production host in the successful expression of several secreted proteins.  相似文献   

11.
Genetically altered bacteria manipulated to express green fluorescent protein (GFP) were used in an investigation of real-time monitoring for recombinant protein expression in cell by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). A significant advantage to whole cell MALDI MS is its ability to analyze bacterial cultures without pretreatment other than concentration. This paper describes the simultaneous analysis of overexpressed GFP recombinant Escherichia coli JM101 by MALDI-TOF MS and standard fluorescence measurements. Cells were harvested from liquid culture media during a 12 h GFP induced expression cycle to demonstrate the feasibility of near real-time monitoring of induced protein expression. The results show that although MALDI MS is not as sensitive as fluorescence measurements, expression levels of the targeted protein can easily be determined. Data available only through MALDI MS measurements reveal the presence of both native GFP and GFP-(histidine)(6) proteins. Additionally, biochemical processes not yet fully understood are observed in the presence and absence of ribosomal protein constituents. Thus, the work presented here demonstrates the ability of MALDI MS to monitor and characterize in real time the expression of targeted and unexpected genetically recombinant proteins in active cell cultures.  相似文献   

12.
The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale‐up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin‐10 (IL‐10) in tobacco BY‐2 cell suspension and evaluated the effect of an elastin‐like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL‐10 accumulation. We report the highest accumulation levels of hIL‐10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL‐10‐ELP has cytokine activity, its activity is reduced compared to unfused IL‐10, likely caused by interference of ELP with folding of IL‐10. Green fluorescent protein has no effect on IL‐10 accumulation, but examining the trafficking of IL‐10‐GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full‐size fusion remains in the whole‐cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL‐10‐GFP‐ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER.  相似文献   

13.
Structural information on intracellular fusions of the green fluorescent protein (GFP) of the jellyfish Aequorea victoria with endogenous proteins is required as they are increasingly used in cell biology and biochemistry. We have investigated the dynamic properties of GFP alone and fused to a single chain antibody raised against lipopolysaccharide of the outer cell wall of gram-negative bacteria (abbreviated as scFv-GFP). The scFv moiety was functional as was proven in binding assays, which involved the use of both fluorescence correlation spectroscopy observing the binding of scFv-GFP to gram-negative bacteria and a surface plasmon resonance cell containing adsorbed lipopolysaccharide antigen. The rotational motion of scFv-GFP has been investigated with time-resolved fluorescence anisotropy. However, the rotational correlation time of scFv-GFP is too short to account for globular rotation of the whole protein. This result can only be explained by assuming a fast hinge motion between the two fused proteins. A modeled structure of scFv-GFP supports this observation.  相似文献   

14.
15.
Fusion proteins comprised of a binding domain and green fluorescent protein (GFP) have the potential to act as one-step binding reagents. In this study, eight single-chain antibodies (scFv) and one single-chain T-cell receptor (scTCR) were secreted as fusions to GFP using a Saccharomyces cerevisiae expression system. Fusion protein secretion levels ranged over 3 orders of magnitude, from 4 microg/liter to 4 mg/liter, and correlated well with the secretion levels of the unfused scFv/scTCR. Three fusion types with various linker lengths and fusion orientations were tested for each scFv/scTCR. Although the fusion protein secretion levels were not significantly affected by the nature of the fusion construct, the properties of the fusion protein were clearly influenced. The fluorescence yield per fusion molecule was increased by separating the scFv/scTCR and GFP with an extended (GGGGS)3 linker, and fusions with scFv/scTCR at the carboxy-terminus were more resistant to degradation. By evaluating leader sequence processing and using GFP fluorescence to track intracellular processing, it was determined that the majority of fusion protein synthesized by the yeast was not secreted and in most cases was accumulating in an immature, although active, endoplasmic-reticulum (ER)-processed form. This contrasted with unfused scFv, which accumulated in both immature ER-processed and mature post-Golgi forms. The results indicated that yeast can be used as an effective host for the secretion of scFv/scTCR-GFP fusion proteins and that as a result of intracellular secretory bottlenecks, there is considerable yeast secretory capacity remaining to be exploited.  相似文献   

16.
Fusion proteins comprised of a binding domain and green fluorescent protein (GFP) have the potential to act as one-step binding reagents. In this study, eight single-chain antibodies (scFv) and one single-chain T-cell receptor (scTCR) were secreted as fusions to GFP using a Saccharomyces cerevisiae expression system. Fusion protein secretion levels ranged over 3 orders of magnitude, from 4 μg/liter to 4 mg/liter, and correlated well with the secretion levels of the unfused scFv/scTCR. Three fusion types with various linker lengths and fusion orientations were tested for each scFv/scTCR. Although the fusion protein secretion levels were not significantly affected by the nature of the fusion construct, the properties of the fusion protein were clearly influenced. The fluorescence yield per fusion molecule was increased by separating the scFv/scTCR and GFP with an extended (GGGGS)3 linker, and fusions with scFv/scTCR at the carboxy-terminus were more resistant to degradation. By evaluating leader sequence processing and using GFP fluorescence to track intracellular processing, it was determined that the majority of fusion protein synthesized by the yeast was not secreted and in most cases was accumulating in an immature, although active, endoplasmic-reticulum (ER)-processed form. This contrasted with unfused scFv, which accumulated in both immature ER-processed and mature post-Golgi forms. The results indicated that yeast can be used as an effective host for the secretion of scFv/scTCR-GFP fusion proteins and that as a result of intracellular secretory bottlenecks, there is considerable yeast secretory capacity remaining to be exploited.  相似文献   

17.
We have constructed three plasmid vectors for the expression of green fluorescent protein (GFP) fusion proteins using the following motif: (His)(6)-GFP-EK-X, where X represents chloramphenicol acetyl-transferase (CAT), human interleukin-2 (hIL-2), and organophosphorous hydrolase (OPH), respectively, (His)(6) represents a histidine affinity ligand for purification, and EK represents an enterokinase cleavage site for recovering the protein-of-interest from the fusion. The CAT and OPH fusion products ( approximately 63 kDa GFP/CAT and approximately 70 kDa GFP/OPH) were expressed at 4.85 microg/mL (19.9 microg/mg-total protein) and 1.42 microg/mL (4.2 microg/mg-total protein) in the cell lysis supernatant, and, in both cases, enzymatic activity was retained while coupled to GFP. In the case of hIL-2 fusion ( approximately 52 kDa), however, the GFP fluorescence was significantly reduced and most of the fusion was retained in the cell pellet. Linear relationships between GFP fluorescence and CAT or OPH concentration, and with enzymatic activity of CAT or OPH, indicated, for the first time, that in vivo noninvasive quantification of proteins-of-interest, was made possible by simple measurement of GFP fluorescence intensity. The utility of GFP as a reporter was not realized without disadvantages however, in particular, an incremental metabolic cost of GFP was found. This could be offset by many benefits foreseen in expression and purification efficiencies.  相似文献   

18.
Fluorescent proteins expressed in mammalian cells can be quantified quickly and noninvasively with a standard fluorescence plate reader. We have previously exploited this quality in cell growth assessment (Hunt et al., 1999b). In this work, different CHO cell lines constitutively expressing fluorescent proteins were evaluated as model systems for process development and optimization. Our results demonstrate that the fluorescence of these cell lines quickly reveals conditions that might improve the overall productivity. Sodium butyrate, a well-known yet unpredictable enhancer of production, was chosen for this study. Due to the competing effects of sodium butyrate ("butyrate") on expression and cell number, the maximal overall productivity represents a compromise between enhancement of production and toxicity. Based on fluorescence only, it is possible to separate effects on cell number and specific production by combining microplate fluorescence measurements with data obtained by flow cytometry. This allows for rapid screening of different clones without counting cells or quantifying the recombinant protein, a highly attractive feature if the expression of green fluorescent protein (GFP) was correlated to that of a protein of interest. For all clones tested, negative effects of butyrate on proliferation were similar, while net enhancement of expression was characteristic for each clone. Therefore, it is necessary to optimize treatment for each individual clone. This work demonstrates that, based on the fluorescence of GFP-expresssing cell lines, it is possible to examine noninvasively three critical, generic parameters of butyrate treatment: butyrate concentration, exposure time, and culture phase at the time of addition.  相似文献   

19.
Purified human urokinase was labeled with either fluorescein isothiocyanate or iodine-125 and used as a probe for binding to the human metastatic carcinomatous cell line, Detroit 562. Cytofluorometry showed that the ligand bound preferentially to cells that had been exposed to acidic pH. The binding was competitive and decreased after mild tryptic digestion. The bound ligand could be removed by restoration of the cells to a low pH. Therefore, the cells had specific binding sites. The bound urokinase was involved in the breakdown of fibrin. Two-color cytofluorometric maps were constructed by counterstaining with propidium iodide. Results suggested that there were different cell populations that had different numbers of receptors and amounts of DNA. We cloned cells and found that single clones had homogeneous levels of receptors with different dissociation constants (from 10(-13) to 10(-11) mol/mg protein) for different clones. Cells of one clone, C5, which had high levels of receptor production, moved characteristically on a glass substratum coated with gold particles and reacted with wheat germ agglutinin, but not with concanavalin A. The receptors were found together with adhesion proteins at the sites where the cells adhered to the substrate. These results and the data obtained by zymography of the cellular proteins suggested that the urokinase-type plasminogen activators were bound to the receptors. The membrane-associated activator may stimulate local proteolysis, facilitating the migration of the tumor cell across the substrate.  相似文献   

20.
G-protein coupled receptors (GPCRs) have been implicated in many human diseases and have emerged as important drug targets. Despite their medical relevance, knowledge about GPCR structure is limited, mainly due to difficulties associated with producing large amounts of functional protein and isolating this protein in functional form. However, our previous results indicate that when the human adenosine A(2)a receptor (A(2)aR) is expressed in Saccharomyces cerevisiae, high yields can be achieved. In light of these initial results and in anticipation of future purification efforts, experiments were conducted to optimize the system for maximum total protein yield. Emphasis was placed on not only producing large quantities of A(2)aR in each cell but also achieving high cell density in batch culture. Therefore, temperature, media pH, inducer concentration in the media, and induction cell density were tested for their effects on both cell growth (as measured by optical density, OD(600)) and per cell A(2)aR expression levels. For these studies, the A(2)aR expression levels were determined using a previously described A(2)aR-green fluorescent protein (GFP) fusion, so that expression could be monitored by fluorescence. Overall the data indicate that at late times ( approximately 60 h of expression) approximately 75% higher total batch protein yields can be achieved using lower expression temperatures or 60% higher using elevated induction cell density. The highest yields correspond to approximately 28 mg per liter of culture of total A(2)aR. Amounts of functional receptor were shown to increase on a per cell basis by decreasing expression temperature up to 25 h of expression, but at late time points ( approximately 60 h) functional yields did not appreciably improve. When compared to other reports of GPCR expression in yeast it is clear that this system is among those producing the highest GPCR protein yields per culture both before and after optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号