首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
在寒温带地区,针叶树种子因其油脂和蛋白含量高,成为许多动物的重要食物来源。在针叶林中,针叶树种子捕食者主要存在2种捕食方式,即传播前捕食和传播后捕食。通常,动物捕食种子的过程被认为是树种实现更新的重要途径。种子为躲避捕食者会形成相应的防御策略,种子的大小、营养、纤维含量、次级代谢产物等特征,通常也是植物种子防御捕食者捕食的策略。同样,这些防御策略一方面会影响种子捕食者的种群动态和取食行为,另一方面也可促使种子捕食者形成反对种子防御的适应对策。因此,研究种子捕食者捕食针叶树种子模式对于进一步认识针叶林中动物取食行为具有重要意义,同时,研究针叶树种子的防御及种子捕食者对其防御的适应策略,将有助于了解动植物之间相互作用。  相似文献   

2.
大耳姬鼠对滇西北18种植物种子的捕食   总被引:2,自引:1,他引:1  
王博  杨效东 《动物学研究》2007,28(4):389-394
2004年9月至10月在滇西北高海拔地区对18种植物种子进行了野外被捕食研究。选取高、低两种人为干扰程度的生境;高、低两种种子密度:3粒种子/塑料盘和15粒种子/塑料盘;3种试验设置:排除啮齿动物等大型捕食者、排除蚂蚁等小型捕食者,不作任何处理作为对照。其结果表明,种子捕食者主要为夜间活动的大耳姬鼠(Apodemus latronum)。种子在高人为干扰的生境中被捕食率要显著低于低人为干扰的生境(F1,430=7.78,P<0.01);种子在高密度状况下的被捕食率要显著高于低密度状况(F1,430=13.16,P<0.001)。大耳姬鼠对于不同种类植物种子也有很强的选择性(F17,414=106.69,P<0.001),如喜好取食华山松(Pinus armandi)、中甸乌头(Aconitum chungdianensis)、豆科一种(Leguminosae sp.)和大头续断(Dipsacusasper)的种子,而不喜好取食高山柏(Sabina squamata)、黄花木(Piptanthus concolor)、子(Cotoneaster sp.)和西南鸢尾(Iris bulleyana)的种子。18种植物中,种子大小与其被捕食率高低之间无显著相关性,不同硬度等级的种子与被捕食率也无显著差异(P>0.05)。  相似文献   

3.
橡胶树在西双版纳引种区的种子捕食与散布   总被引:1,自引:0,他引:1  
在纯橡胶林、胶-竹复合林、沟谷季节雨林、次生林及毗邻次生林的橡胶林共5种不同生境中释放标记的橡胶树种子,观测种子捕食者以及种子被捕食、埋藏和扩散情况。结果表明:纯橡胶林和沟谷季节雨林内的橡胶树种子大多数都原地存留(80%和98%),而胶-竹复合林内几乎100%的种子均被捕食;次生林内释放的橡胶树种子捕食率也几为100%,而毗邻次生林的橡胶林种子捕食率约50%;卡方检验表明,胶-竹复合林的种子捕食率显著高于沟谷季节雨林和纯橡胶林,次生林内显著高于毗邻的橡胶林(P0.001)。绝大多数橡胶树种子被捕食者原地或搬运后取食,仅有少量种子被埋藏。大多数种子(80%)被搬运距离在10 m以内。红外感应相机拍摄和饲喂实验发现,黄胸鼠(Rattus tanezumi)和红刺鼠(Rattus surifer)为主要的种子捕食者。可见,在西双版纳引种区橡胶树种子主要是被小型鼠类取食,但捕食强度较大,而被埋藏种子比例很低,散布距离较短(10 m)。  相似文献   

4.
刘季科  苏建平 《兽类学报》1994,14(2):117-129
本研究在野外围栏条件下有用析因实验设计,测定营养、捕食及空间行为对根田鼠和群统计特征的影响。本文旨的检验下述特定假设;高质量食物可利用性和捕食对限制小型啮齿动物种群密度具有独立的和累加的效应。3年时间,4种野外实验处理6个重复和研究结果表明,附加食物并预防捕得处理的种群具有最高密度;未附加食物及预防捕食者处理(对照)的种群密度最低;而单一处理和种群,其密度居中。不同处理条件下,新生个体在种群的补充  相似文献   

5.
果实(种子)化学防御与食果实动物的适应对策   总被引:1,自引:1,他引:0  
鲁长虎 《生态学杂志》2005,24(5):567-572
种子植物在果实(种子)成熟后需要防御食果实动物捕食种子,同时要传播种子至适宜萌发的生境。很多植物依赖食果实动物传播种子,称动物传播植物。果实(种子)化学防御是抵御种子捕食者的重要手段。果实(种子)中次生物质包括各种生物碱、生氰糖苷、萜类和酚类等,种类繁多;次生物质的含量随果实成熟过程而变化。次生物质可以抵御动物的捕食,其毒性对种子传播者和种子捕食者没有选择性,即具泛毒性。果肉中的次生物质也可以起到轻泻剂的作用,缩短种子在动物消化道的滞留时间,以影响传播效率。果实(种子)次生物质的产生不受植物环境条件的影响,其产生与果实质量有关。在温带地区,通常SS型果实次生物质含量低,而FL型果实含量高。食果实动物可通过调整捕食行为、摄取环境中特殊物质和获得丰富营养等3个方面适应次生物质。果实(种子)中次生物质的研究对动植物相互作用、协同进化理论具有重要的意义。  相似文献   

6.
 以分布在云南西双版纳地区的大型先锋草本植物小果野芭蕉(Musa acuminata)为研究材料,研究其种子初次散布过程和不同时空尺度上种子被 捕食格局。小果野芭蕉的成熟果实有75%在夜间被取食和传播,在白天消失的果实则占25%。蝙蝠是其最主要的种子传播者,鸟类在其种子传播 过程中也起到一定的作用。人工摆放种子试验结果显示小果野芭蕉种子的主要转移者是小型啮齿类(鼠类)和蚁类:在开放处理下3 d后转移率为 86%,排除蚁类(鼠类可进入)处理下种子转移率为69%以及排除鼠类(蚂蚁可进入)处理下种子被转移率为56%。季节、地点和生境均显著影响人工 摆放种子被转移强度:雨季显著高于旱季(p<0.001), 野芭蕉生境显著高于与其相连的自然森林和荒地(p<0.001),在人为干扰较少的补蚌自然 保护区显著低于西双版纳热带植物园和新山,而后两者之间并无显著差异(p>0.05)。同时,地点和生境以及季节、地点和生境都有显著的交互 作用。与相邻的森林和荒地相比,野芭蕉群落中种子被鼠类捕食的强度最大且受蚁类二次转移的比例最少,森林和荒地中种子被鼠类捕食的强 度相对较小且蚁类对种子的二次转移比例较高,从而更好地帮助种子逃避鼠类捕食。因此,依赖于食果动物(主要是蝙蝠, 也包括鸟类)的初次 散布是小果野芭蕉种子逃避捕食的关键。  相似文献   

7.
8.
植物的繁殖体总是面临来自各类生物(如昆虫、脊椎动物、真菌)的捕食风险。因动物捕食引起的种子死亡率影响植物的适合度、种群动态、群落结构和物种多样性的保持。种子被捕食的时间和强度成为植物生活史中发芽速度、地下种子库等特征的主要选择压力,而种子大小、生境类型等因素也影响动物对植物种子的捕食。捕食者饱和现象被认为是植物和种子捕食者之间的高度协同进化作用的结果,是限制动物破坏种子、提高被扩散种子存活率的一种选择压力。大部分群落中的大多数植物种子被动物扩散。种子扩散影响种子密度、种子被捕食率、病原体攻击率、种子与母树的距离、种子到达的生境类型以及建成的植株将与何种植物竞争,从而影响种子和幼苗的存活,最终影响母树及后代植物的适合度。种子被动物扩散后的分布一般遵循负指数分布曲线,大多数种子并没有扩散到离母树很远的地方。捕食风险、生境类型、植被盖度均影响动物对种子的扩散。植物结实的季节和果实损耗的过程也体现了其对扩散机会的适应。许多动物有贮藏植物种子的行为。动物贮藏植物繁殖体的行为,一方面调节食物的时空分布,提高了贮食动物在食物缺乏期的生存概率;另一方面也为种子萌发提供了适宜条件,促进了植物的扩散。于是,植物与贮食动物形成了一种协同进化关系,这种关系可能是自然界互惠关系(mutualism)的一种。影响幼苗存活和建成的因子包括种子贮蒇点的微生境、湿度、坡向、坡度、林冠盖度等。许多果食性动物吃掉果肉后,再将完好的种子反刍或排泄出来。种子经动物消化道处理后,发芽率常有所提高。  相似文献   

9.
娑罗子为七叶树科植物欧洲七叶树(Aesculus hippocastannum)、日本七叶树(Aesculus turbinata Blume)和中国天师栗(Aesculus Wilsonii Rehd)的果实或种子。欧洲七叶树,又名欧马栗(horse chestnut),其种子和幼枝的外皮可入药,在欧洲应用广泛,早在18世纪即用于解热,19世纪后期可用于治疗痔疮。七叶皂苷是从娑罗子(七叶树种子)中提取的主要活性成分,属于三萜皂苷类药物。它具有抗渗、消肿、改善血液循环、增加静脉张力、抑制胃排空、清除活性氧和抗肿瘤作用。临床上可广泛应用于慢性静脉功能不全,痔疮、水肿、哮喘等。本文对七叶皂苷的药理作用及其临床应用进行综述。  相似文献   

10.
本研究在野外围栏条件下采用析因实验设计,测定营养、捕食及空间行为对根田鼠(Mi-crotusoeconomus)种群统计特征的影响。本文旨在检验下述特定假设:高质量食物可利用性和捕食对限制小型啮齿动物种群密度具有独立的和累加的效应。3年期间,4种野外实验处理6个重复的研究结果表明,附加食物并预防捕食者处理的种群具有最高密度;未附加食物及不预防捕食者处理(对照)的种群密度最低;而单一处理的种群,其密度居中。不同处理条件下,新生个体在种群的补充模式以及种群瞬时增长率的变化均与种群密度的变动相应一致。双因素ANOVA的结果证明,附加高质量食物能明显地提高根田鼠的种群密度,而对种群补充量的作用则较弱,仅接近显著水平;预防捕食者不仅能显著地作用于种群密度,更能强烈地影响种群补充量。高质量食物和捕食者的作用具有累加的性质,两者的交互作用对种群密度和补充量均无显著影响。  相似文献   

11.
Predation and dispersal of large and small seeds of a tropical palm   总被引:10,自引:0,他引:10  
Steven W. Brewer 《Oikos》2001,92(2):245-255
Seed size may vary greatly among individuals within plant species. What effects the extremes of this variation have for seeds taken by small mammals are poorly understood. Not all seeds removed by small mammals are necessarily eaten. Small rodents are common seed predators, but they may disperse a significant proportion of seeds by scatter hoarding them via burial. Size-dependent predation and dispersal of seeds has not been directly tested within a plant species for tropical rodents. This study tested whether or not large and small nuts of Astrocaryum mexicanum (Palmae) differed in their fates due to handling by the spiny pocket mouse Heteromys desmarestianus (Heteromyidae). Exclosures were used to give small rodents exclusive access to A. mexicanum nuts. H. desmarestianus preferentially consumed large over small A. mexicanum nuts, but cached (in burrows and by scatter hoarding) similar proportions of these nuts by size. Small nuts tended to be buried farther away from exclosures than large nuts. Although sample sizes of buried nuts were small, the rodents retrieved all buried large nuts, but 30% of the small nuts remained buried long enough to germinate. I also examined predispersal predation by insects and found that insects appear to have no size preference for A. mexicanum nuts, but insect predation appears to hinder nut development. Thus, nuts attacked by insects develop to be significantly smaller, with a low proportion of undamaged endosperm, than uninfested nuts. It is hypothesized that the preferential predation of large A. mexicanum nuts by H. desmarestianus is a response by these rodents to insect predation.  相似文献   

12.
《Acta Oecologica》2008,33(3):328-336
Studies of post-dispersal seed removal in the Neotropics have rarely examined the magnitude of seed removal by different types of granivores. The relative impact of invertebrates, small rodents, and birds on seed removal was investigated in a 2,178 ha Atlantic forest fragment in southeastern Brazil. We used popcorn kernels (Zea mays—Poaceae) to investigate seed removal in a series of selective exclosure treatments in a replicated, paired design experiment that included forest understory, gaps, and forest edge sites. We recorded the vegetation around the experimental seed stations in detail in order to evaluate the influence of microhabitat traits on seed removal. Vertebrate granivores (rodents and birds) were surveyed to determine whether granivore abundance was correlated with seed removal levels. Seed removal varied spatially and in unpredictable ways at the study site. Seed encounter and seed use varied with treatments, but not with habitat type. However, seed removal by invertebrates was negatively correlated with gap-related traits, which suggested an avoidance of large gaps by granivorous ants. The abundance of small mammals was remarkably low, but granivorous birds (tinamous and doves) were abundant at the study site. Birds were the main seed consumers in open treatments, but there was no correlation between local granivorous bird abundance and seed removal. These results emphasize the stochastic spatial pattern of seed removal, and, contrary to previous studies, highlight the importance of birds as seed predators in forest habitats.  相似文献   

13.
Studies of post-dispersal seed removal in the Neotropics have rarely examined the magnitude of seed removal by different types of granivores. The relative impact of invertebrates, small rodents, and birds on seed removal was investigated in a 2,178 ha Atlantic forest fragment in southeastern Brazil. We used popcorn kernels (Zea mays—Poaceae) to investigate seed removal in a series of selective exclosure treatments in a replicated, paired design experiment that included forest understory, gaps, and forest edge sites. We recorded the vegetation around the experimental seed stations in detail in order to evaluate the influence of microhabitat traits on seed removal. Vertebrate granivores (rodents and birds) were surveyed to determine whether granivore abundance was correlated with seed removal levels. Seed removal varied spatially and in unpredictable ways at the study site. Seed encounter and seed use varied with treatments, but not with habitat type. However, seed removal by invertebrates was negatively correlated with gap-related traits, which suggested an avoidance of large gaps by granivorous ants. The abundance of small mammals was remarkably low, but granivorous birds (tinamous and doves) were abundant at the study site. Birds were the main seed consumers in open treatments, but there was no correlation between local granivorous bird abundance and seed removal. These results emphasize the stochastic spatial pattern of seed removal, and, contrary to previous studies, highlight the importance of birds as seed predators in forest habitats.  相似文献   

14.
Loesberg  Jenna A.  Meyer  Wallace M. 《Plant Ecology》2021,222(10):1089-1100

Seed predation may influence community assembly and invasion dynamics when seed predators preferentially select some seed species over others. However, the role of different seed predators and their preferences for seeds in multiple ecological contexts, including the endangered California sage scrub ecosystem, remain unresolved making predictions about which processes limit or promote invasions difficult. In addition, selection criteria, specifically how seed size and biogeographic origin (native versus invasive) influences selection, requires further research across multiple granivore guilds. We examined seed predator preference for common native and invasive seeds across small and large seed classes using seed dish experiments with motion-sensor video observation. We also quantified the relative importance of ants, birds, and mammals as seed predators in sage scrub. Community-wide, granivores preferred the small-seeded invasive mustard Brassica nigra, avoided the large-seeded invasive grass Bromus rubens and the native large-seeded shrub Encelia californica, and did not show significant selection or avoidance for the small-seeded native shrub Salvia apiana. Birds, notably California towhees (Melozone crissalis), were the most frequent granivore while rodents and ants rarely removed seeds. This study reveals that birds are important seed predators in California sage scrub and have the potential to contribute to biotic resistance to mustard invasions (Brassica nigra and potentially others).

  相似文献   

15.
Terborgh  J.  Losos  E.  Riley  M. P.  Riley  M. Bolaños 《Plant Ecology》1993,107(1):375-386
We studied the pre-germination loss of seeds to invertebrate and vertebrate seed predators of 5 species of Amazonian trees (Astrocaryum macrocalyx—Palmae; Bertholletia excelsa—Lecithydaceae; Calatola venezuelana—Icacinaceae; Dipteryx micrantha—Leguminosae (Papilionoidae); Hymenaea courbaril-Leguminosae (Caesalpinoidae)). These five species were selected from a large tree flora on several criteria. All possess large (3–10 cm) well-protected seeds that might plausibly be attractive to mammalian seed predators. The reproductive biology of three of the species, or close congeners, had been studied elsewhere in the Neotropics (Astrocaryum, Dipteryx, Hymenaea); one is important to the economy of southeastern Peru (Bertholletia); and one, despite large and apparently edible seeds, appeared to suffer no pre-germination loss to predators (Calatola). We conducted the research in mature forests in the Manu National Park of southeastern Peru where mammal densities are unperturbed by human activities. Densities of adult trees of the five species in our area range from very high (>30 per ha: Astrocaryum) to very low (1 per ha: Hymenaea).Loss of seeds to all causes, and to mammalian seed predators in particular, was determined for seeds placed in 2-square meter mammal exclosures and in open controls located at 10 m (near) and 50 m (far) from a large mature individual of the target species (with minor variations in the design for Astrocaryum and Calatola). The exclosures were of two types: impermeable—designed to exclude all mammals, but not invertebrate seed predators, and semipermeable—designed to admit small (<500 g), but not large mammals. Experimental and control plots were stocked with apparently viable seeds during the dry-wet transition period (October–November) and scored one year later.A significant distance effect (higher predation near vs far from a large conspecific adult) was found in only one of the species (Astrocaryum), the only one to be attacked with high frequency by invertebrate seed predators. The absence of any detectable distance effect attributable to mammals suggests that mammals, over the course of a year, thoroughly search the forest floor for seeds. Invertebrates may thus be responsible for most pre-germination distance (density) effects. With respect to the treatments, we found three qualitatively distinct results: seeds of three species (Astrocaryum, Bertholletia, Dipteryx) were significantly protected by the impermeable, but not semipermeable exclosures, implicating small mammals in seed loss; the seeds of one species (Hymenaea) were significantly protected by exclosures of both types, implicating large mammals; and the seeds of one species (Calatola) exhibited 100% survival, whether or not protected by exclosures.The importance of large mammals as seed predators is generally underestimated in these experiments because semipermeable exclosures may serve as foraging reserves for small mammals. Finally, we noted no relationship between the intensity of mammalian seed predation (as suggested by the survival of unprotected seeds) and the abundance of adults of the five species in the environment. The diversity of results obtained for the five species reveals that large-seeded tropical trees may display a wide range of demographic patterns, and points to the likely importance of post-germination bottlenecks in the population biology of many species, even those that may experience severe pre-germination seed loss.  相似文献   

16.
Post-dispersal seed predation is only one of many factors underlying plant demography and evolution. Nevertheless, the generalist feeding habits of many post-dispersal seed predators and the limited ability of plants either to compensate for or to respond to post-dispersal seed losses directly suggest that post-dispersal seed predation may have a considerable impact on plant populations. Seed predators probably have little direct influence on the demography of plants that regenerate exclusively by vegetative means or are buffered by a large active seed bank, but such species are only a minority in most plant communities.In general, ants are significant post-dispersal seed predators in arid and semi-arid ecosystems while they act mainly as seed dispersers rather than as predators in temperate ecosystems. Although studies have probably underestimated the importance of invertebrates and birds as seed predators, rodents appear to have greater potential to influence seed dynamics, and are particularly important in temperate ecosystems. For example, production of mast seed crops is more effective at satiating specialist invertebrate seed predators than generalist vertebrates, and recruitment may be limited by post-dispersal seed predation even during mast years.Both spatial variation in post-dispersal seed predation and differences in predation between species are important elements which facilitate the coexistence of different plant species. Where microsites are limiting, selective post-dispersal seed predators can influence pre-emptive competition for these microsites. Seed size determines the extent of density-dependent predation and the exploitation of buried seed. This suggests that post-dispersal seed predators may also play a role in the evolution of seed characteristics. However, conclusions regarding the ecological and evolutionary impact of post-dispersal seed predators will remain speculative without a more substantial empirical base.  相似文献   

17.
Hulme  Philip E.  Borelli  Teresa 《Plant Ecology》1999,145(1):149-156
The considerable variability found in post-dispersal seed predation and the absence of consistent directional trends (e.g., with reference to seed size) has made it difficult to predict accurately the impact of seed predators on plant communities. We examined the variation attributable to location, seed density and seed burial on the removal of seeds of three tree species: Fraxinus excelsior, Taxus baccata and Ulmus glabra. Experiments were undertaken in five deciduous woodlands in Durham, U.K., and the relative importance of vertebrate and invertebrate seed predators was assessed using selective exclosures. In all five woodlands, seed removal was greatest from treatments to which vertebrates had access, and losses attributable to invertebrates were negligible. Rodents, in particular Apodemus sylvaticus (Muridae) and Clethrionomys glareolus (Cricetidae), were the principal seed consumers in these woodlands. Unidentified vertebrate seed predators (probably birds, rabbits and/or squirrels) appeared to be significant seed removers in three of the five woodlands. Rates of removal differed among the three tree species, increasing in the following order Fraxinus < Taxus < Ulmus but were not related to seed mass. The major effect influencing rates of seed removal was seed burial, which halved rates of seed removal overall. The effect of seed burial was a function of seed size. The larger seeds of Taxus realising little benefit from seed burial whereas encounter of the smaller Ulmus seeds fell by almost two-thirds. Removal was density-dependent for all three species. However, the relative increase in seed encounter through an increase in seed density was a negative function of seed size. This suggests that, for large seeds, the opportunity to escape seed predation via burial or reduced seed density is limited. These results reveal a number of parallels with other studies of post-dispersal predation and identify several generalities regarding the interaction between plants and post-dispersal seed predators. Comparison of the seed predation results with actual seedling distributions suggests that seed predators may influence regeneration of Ulmus glabra but probably play a lesser role in the dynamics of Taxus baccata and Fraxinus excelsior.  相似文献   

18.
Seed predators provide a valuable ecosystem service to farmers by reducing densities of weed seeds, and, in turn, densities of weed seedlings they must manage. The predominant invertebrate weed seed predator in Maine, USA, agroecosystems is the carabid beetle Harpalus rufipes DeGeer. Pitfall trapping has shown that H. rufipes prefers sites with vegetative cover to fallow sites, preference speculated to be driven by predator avoidance behavior. To test this hypothesis, ‘second-order predation assays’ were developed, in which live H. rufipes prey were presented to second-order predators. Field experiments were conducted to determine foremost if H. rufipes was subject to second-order predation, and secondly, whether (a) vegetative cover affords H. rufipes protection from second-order predators, and (b) high rates of second-order predation correspond with decreased invertebrate seed predation rates. Two 72-h experiments were conducted (mid August and September 2012) at crop and non-crop sites across a 28 ha diversified farm in Stillwater, ME, USA.Second-order predation was 2.8% per day. Based on images from motion-sensing cameras, H. rufipes’ predators included birds and small mammals. Neither a relationship between second-order predation and vegetative treatment, nor an empirical relationship between second-order predation and invertebrate seed predation were detected. However, a simulation model predicted that 2.8% per day second-order predation could increase the number of seeds entering the seedbank by more than 17% annually. Additionally, complex habitats supported higher rates of second-order predation than did simple habitats.  相似文献   

19.
Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds.In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management.Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号