首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
4.
The importance of transforming growth factor-beta1 (TGF-beta1) in plasminogen activator inhibitor-1 (PAI-1) gene expression has been established, but the precise intracellular mechanisms are not fully understood. Our hypothesis is that the actin cytoskeleton is involved in TGF-beta1/MAPK-mediated PAI-1 expression in human mesangial cells. Examination of the distributions of actin filaments (F-actin), alpha-actinin, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by immunofluorescence and immunoprecipitation revealed that ERK and JNK associate with alpha-actinin along F-actin and that TGF-beta1 stimulation promote the dissociation of ERK and JNK with F-actin. Disassembly of the actin cytoskeleton inhibited phosphorylation of ERK and JNK and modulated PAI-1 expression and promoter activity under both basal and TGF-beta1-stimulated conditions. Stabilizing actin prevented dephosphorylation of ERK and JNK. ERK and JNK inhibitors and overexpressed dominant negative mutants antagonized the ability of TGF-beta1 to increase PAI-1 expression and promoter activity. Disassembly of F-actin also inhibited AP-1 DNA binding activity as determined by electrophoretic mobility shift assay using AP-1 consensus oligonucleotides derived from human PAI-1 promoter. F-actin stabilization prevented loss of AP-1 DNA binding activity. Therefore, changes in actin cytoskeleton modulate the ability of TGF-beta1 to stimulate PAI-1 expression through a mechanism dependent on the activation of MAPK/AP-1 pathways.  相似文献   

5.
Interleukin (IL)-1 beta is a pro-inflammatory cytokine that has been shown to play a pivotal role in the onset of inflammatory bowel disease (IBD), however, the molecular mechanisms underlying the production of IL-1 beta in IBD are not fully understood. We investigated dextran sulfate sodium (DSS)-induced IL-1 beta production and caspase-1 activities in murine peritoneal macrophages (pM phi). Further, the activation status of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun NH(2)-terminal kinase (JNK1/2), as well as their upstream target kinases, were examined by Western blotting. In addition, mRNA expression was assessed by RT-PCR and CXC chemokine ligand 16 (CXCL16) protein was detected by immunocytochemistry. DSS-treated pM phi released IL-1 beta protein in a time-dependent manner without affecting mRNA levels during 3-24 h, and caspase-1 activity peaked at 5 min (29-fold). IL-1 beta release and caspase-1 activity induced by DSS were significantly inhibited by a MAPK kinase 1/2 inhibitor, a p38 MAPK inhibitor, and NAC, however, not by JNK1/2 or a protein kinase C inhibitor. In addition, DSS strikingly induced the phosphorylation of p38 MAPK and ERK1/2 within 2 and 10 min, respectively. DSS also induced intracellular generation of reactive oxygen species (ROS). Pre-treatment with anti-CXCL16 for 24 h, but not anti-scavenger receptor-A, anti-CD36, or anti-CD68 antibodies, significantly suppressed DSS-induced IL-1 beta production. Our results suggest that DSS triggers the release of IL-1 beta protein from murine pM phi at a post-translational level through binding with CXCL16, ROS generation, and resultant activation of both p38 MAPK and ERK1/2 pathways, and finally caspase-1 activation.  相似文献   

6.
We have identified a novel Jun N-terminal kinase (JNK)-binding protein, termed JNKBP1, and examined its binding affinity for JNK1, JNK2, JNK3, and extracellular signal-regulated kinase 2 (ERK2) in COS-7 cells. JNKBP1 preferentially interacted with the JNKs, but not with ERK2. Furthermore, we investigated the effect of overexpressing JNKBP1 on the JNK and ERK signaling pathways in COS-7 cells. JNKBP1 alone had only a marginal effect on JNK activity. However, the activation of JNK by MEK kinase 1 and TGF-beta-activated kinase 1 was significantly enhanced in the presence of JNKBP1. In contrast, JNKBP1 had no or very little effect on the ERK signaling pathway. These results suggest that JNKBP1 functions to facilitate the specific and efficient activation of the JNK signaling pathways.  相似文献   

7.
8.
Severe injury deranges immune function and increases the risk of sepsis and multiple organ failure. Kupffer cells play a major role in mediating posttraumatic immune responses, in part via different Toll-like receptors (TLR). Although mitogen-activated protein kinases (MAPK) are key elements in the TLR signaling pathway, it remains unclear whether the activation of different MAPK are TLR specific. Male C3H/HeN mice underwent midline laparotomy (i.e., soft tissue injury), hemorrhagic shock (MAP approximately 35 mm Hg for 90 min), and resuscitation. Kupffer cells were isolated 2 h thereafter, lysed and immunoblotted with antibodies to p38, ERK1/2, or JNK proteins. In addition, cells were preincubated with specific inhibitors of p38, ERK1/2, or JNK MAPK followed by stimulation with the TLR2 agonist, zymosan; the TLR4 agonist, LPS; or the TLR9 agonist, CpG DNA. Cytokine (TNF-alpha, interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and KC) production was determined by cytometric bead array after 24 h in culture. MAPK activity as well as TNF-alpha, MCP-1, and KC production by Kupffer cells were significantly increased following trauma-hemorrhage. TLR4 activation by LPS stimulation increased the levels of all measured cytokines. CpG-stimulated TLR9 signaling increased TNF-alpha and IL-6 levels; however, it had no effect on chemokine production. Selective MAPK inhibition demonstrated that chemokine production was mediated via p38 and JNK MAPK activation in TLR2, -4, and -9 signaling. In contrast, TNF-alpha and IL-6 production was differentially regulated by MAPK depending on the TLR pathway stimulated. Thus, Kupffer cell TLR signaling employs different MAPK pathways in eliciting cytokine and chemokine responses following trauma-hemorrhage.  相似文献   

9.
10.
Intestinal epithelial cells (IEC) are capable of responding to IL-1 stimulation by producing a variety of pro-inflammatory cytokines. Recently, we have found that binding of the alpha3beta1 integrin may have a regulatory effect on IL-1 responses and intracellular signaling by suppressing cytokine secretion, mRNA expression and the downstream intracellular signaling events from IKK to NF-kappaB activation. In this study, we extend these findings by showing that treatment of the Caco-2 epithelial cells with a cross-linking anti-alpha3 integrin antibody resulted in a suppression in the levels of IL-1 induced AP-1 binding activity in nuclear extracts. Furthermore, suppressed levels of IL-1 induced c-Jun N-terminal kinase (JNK) phosphorylation and kinase activity were seen with the antibody treated cells. Cells cultured on purified laminin-5, the ligand for the alpha3beta1 integrin, did not show significantly elevated levels of JNK phosphorylation after IL-1 stimulation while cells cultured on fibronectin yielded significantly elevated levels of IL-1 induced JNK phosphorylation. These results indicate that binding of the alpha3beta1 integrin results in a suppression in the activation of the IL-1 induced intracellular signaling pathway from JNK to AP-1. This novel regulatory effect may be a potentially important mechanism to regulate IL-1 mediated responses by IEC.  相似文献   

11.
Thy-1 (CD90) crosslinking by monoclonal antibodies (mAb) in the context of costimulation causes the activation of mouse T-lymphocytes; however, the associated signal transduction processes have not been studied in detail. In this study we investigated the role of mitogen-activated protein kinases (MAPKs) in Thy-1-mediated T-lymphocyte activation using mAb-coated polystyrene microspheres to crosslink Thy-1 and costimulatory CD28 on murine T-lymphocytes. Concurrent Thy-1 and CD28 crosslinking induced DNA synthesis by T-lymphocytes, as well as interleukin (IL)-2 and IL-2 receptor (IL-2R) α chain (CD25) expression. Increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, and c-Jun N-terminal protein kinase (JNK) was also observed. Pharmacologic inhibition of ERK1/2 or JNK activation inhibited Thy-1-induced DNA synthesis and IL-2 production by T-lymphocytes. p38 MAPK inhibition also decreased DNA synthesis in Thy-1-stimulated T-lymphocytes; however, IL-2 production was increased in these cells. Inhibition of JNK, but not ERK1/2 or p38 MAPK, caused a marked reduction in Thy-1-induced CD25 expression. In addition, inhibition of p38 MAPK or JNK, but not ERK1/2, impaired the growth of IL-2-dependent CTLL-2 T-lymphocytes but did not substantially affect CD25 expression. Finally, exogenous IL-2 reversed the inhibitory effect of ERK1/2 or JNK inhibition on Thy-1-stimulated DNA synthesis by T-lymphocytes but did not substantially reverse JNK inhibition of CD25 expression. Collectively, these results suggest that during Thy-1-induced T-lymphocyte activation, ERK1/2 and JNK promoted IL-2 production whereas p38 MAPK negatively regulated IL-2 expression. JNK signalling was also required for CD25 expression. IL-2R signalling involved both p38 MAPK and JNK in CTLL-2 cells, whereas p38 MAPK was most important for IL-2R signalling in primary T-lymphocytes. MAPKs are therefore essential signalling intermediates for the Thy-1-driven proliferation of mouse T-lymphocytes.  相似文献   

12.
Abstract: Dopamine D2 receptors are members of the G protein-coupled receptor superfamily and are expressed on both neurons and astrocytes. Using rat C6 glioma cells stably expressing the rat D2L receptor, we show here that dopamine (DA) can activate both the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) pathways through a mechanism involving D2 receptor-G protein complexes and the Ras GTP-binding protein. Agonist binding to D2 receptors rapidly activated both kinases within 5 min, reached a maximum between 10 and 15 min, and then gradually decreased by 60 min. Maximal activation of both kinases occurred with 100 nM DA, which produced a ninefold enhancement of ERK activity and a threefold enhancement of JNK activity. DA-induced kinase activation was prevented by either (+)-butaclamol, a selective D2 receptor antagonist, or pertussis toxin, an uncoupler of G proteins from receptors, but not by (?)-butaclamol, the inactive isomer of (+)-butaclamol. Cotransfection of RasN17, a dominant negative Ras mutant, prevented DA-induced activation of both ERK and JNK. PD098059, a specific MEK1 inhibitor, also blocked ERK activation by DA. Transfection of SEK1(K → R) vector, a dominant negative SEK1 mutant, specifically prevented DA-induced JNK activation and subsequent c-Jun phosphorylation without effect on ERK activation. Furthermore, stimulation of D2 receptors promoted [3H]thymidine incorporation with a pattern similar to that for kinase activation. DA mitogenesis was tightly linked to Ras-dependent mitogen-activated protein kinase (MAPK) and JNK pathways. Transfection with RasN17 and application of PD098059 blocked DA-induced DNA synthesis. Transfection with FlagΔ169, a dominant negative c-Jun mutant, also prevented stimulation of [3H]thymidine incorporation by DA. The demonstration of D2 receptor-stimulated MAPK pathways may help to understand dopaminergic physiological functions in the CNS.  相似文献   

13.
Garat C  Arend WP 《Cytokine》2003,23(1-2):31-40
Interleukin-1 (IL-1) plays a pivotal role in the pathogenesis of inflammatory bowel disease (IBD). IL-1 action is regulated in part by its naturally occurring inhibitor, the IL-1 receptor antagonist (IL-1Ra). Four splice variants of IL-1Ra gene product have been described, one secreted (sIL-1Ra) and three intracellular (icIL-1Ra1, 2, 3). Although sIL-1Ra and icIL-1Ra1 bind to type I IL-1 receptor with equal affinity, icIL-1Ra1 may carry out unique functions inside cells. The goal of this study was to determine the role of icIL-1Ra1 in regulation of cytokine-induced IL-6 and IL-8 production in Caco-2 intestinal epithelial cells. icIL-1Ra1 inhibited IL-1-induced IL-6 and IL-8 production. IL-1 activated all three mitogen-activated protein (MAP) kinase family members: p38 MAP kinase, extracellular-regulated kinases (ERK), and c-Jun amino-terminal kinases (JNK). Specific inhibitors of each MAP kinase pathway decreased IL-1-induced IL-6 and IL-8 production. Overexpression of icIL-1Ra1 inhibited p38 MAP kinase phosphorylation, but had no effect on ERK and JNK phosphorylation. In addition, icIL-1Ra1 inhibited nuclear translocation of NF-kappaB after IL-1 stimulation. In conclusion, these data indicate that icIL-1Ra1, acting in the cytoplasm of Caco-2 cells, decreased IL-1-induced IL-6 and IL-8 production. This intracellular anti-inflammatory activity of icIL-1Ra1 was mediated through inhibition of p38 MAP kinase and NF-kappaB signal transduction pathways.  相似文献   

14.
In the present study, we found that (−)-epigallocatechin-3-gallate (EGCG) significantly up-regulated the mRNA expression of the Th1/Th2 cytokines including IL-2, IFN-γ, IL-5 and IL-13 in Jurkat T cells. The EGCG-induced mRNA up-regulation of IL-2 and IL-5 was predominantly affected by the extracellular signal-regulated protein kinase (ERK) signalling, whereas IL-13 gene expression, the most responsive to the EGCG treatment, was dependent on neither ERK nor c-jun NH2-terminal kinase (JNK) signalling. IFN-γ gene expression was partially mitigated by both inhibitors of the ERK and JNK pathways. Furthermore, catalase significantly attenuated the intracellular peroxide production, phosphorylation of ERK and JNK, and all cytokine gene expressions induced by EGCG. In addition, physiologically relevant concentrations of both EGCG and H2O2-induced up-regulation of IL-5 gene expression. Our findings provide biological evidence that EGCG induces Th1/Th2 cytokine mRNA expression via H2O2 production followed by activation of ERK or JNK in Jurkat T cells.  相似文献   

15.
16.
Hypoxia has been shown to act as a proliferative stimulus for adventitial fibroblasts of the pulmonary artery. The signaling pathways involved in this growth response, however, remain unclear. We tested the hypothesis that hypoxia-induced proliferation of fibroblasts would be dependent on distinct (compared with serum) activation and utilization patterns of mitogen-activated protein (MAP) kinases initiated by Galpha(i/o) proteins. We found that hypoxia stimulated increases in DNA synthesis and growth of quiescent fibroblasts in the absence of exogenous mitogens and also markedly augmented serum-stimulated growth responses. Hypoxia caused a transient activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the time course and pattern of which was somewhat similar to that induced by serum but which was of lesser magnitude. On the other hand, hypoxia-induced activation of p38 MAP kinase was biphasic, whereas serum-stimulated activation of p38 MAP kinase was transient, and the magnitude of activation was greater for hypoxia compared with that of serum stimulation. ERK1/2, JNK1, and p38 MAP kinase but not JNK2 were necessary for hypoxia-induced proliferation because PD98059, SB202190, and JNK1 antisense oligonucleotides nearly ablated the growth response. JNK2 appeared to act as a negative modulator of hypoxia-induced growth because JNK2 antisense oligonucleotides led to an increase in DNA synthesis. In serum-stimulated cells, antisense JNK1 oligonucleotides and PD98059 had inhibitory effects on proliferation, whereas SB202190 led to an increase in DNA synthesis. Pertussis toxin, which blocks Galpha(i/o)-mediated signaling, markedly attenuated hypoxia-induced DNA synthesis and activation of ERK and JNK but not p38 MAP kinase. We conclude that hypoxia itself can act as a growth promoting stimulus for subsets of bovine neonatal adventitial fibroblasts largely through Galpha(i/o)-mediated activation of a complex network of MAP kinases whose specific contributions to hypoxia-induced proliferation differ from traditional serum-induced growth signals.  相似文献   

17.
Callsen D  Brüne B 《Biochemistry》1999,38(8):2279-2286
The inflammatory mediator nitric oxide (NO*) promotes apoptotic cell death based on morphological evidence, accumulation of the tumor suppressor p53, caspase-3 activation, and DNA fragmentation in RAW 264.7 macrophages. Since nitrosothiols may actually be the predominant form of biologically active NO* in vivo, we used S-nitrosoglutathione (GSNO) to study activation of extracellular signal-regulated protein kinases1/2 (ERK1/2), c-Jun N-terminal kinases/stress-activated protein kinases (JNK1/2), and p38 kinases. Moreover, we determined the role of mitogen-activated protein kinase signaling in the apoptotic transducing ability of GSNO. ERK1/2 became activated in response to GSNO after 4 h and remained active for the next 20 h. Blocking the ERK1/2 pathway by the mitogen-activated protein kinase kinase inhibitor PD 98059 enhanced GSNO-elicited apoptosis. p38 was activated as well, but inhibition of p38 with SB 203580 left apoptosis unaltered. Activation of JNK1/2 by GSNO showed maximal kinase activities between 2 and 8 h. Attenuating JNK1/2 by antisense-depletion eliminated the pro-apoptotic action of low GSNO concentrations (250 microM), whereas apoptosis proceeded independently of JNK1/2 at higher doses of the NO donor (500 microM). Decreased apoptosis by JNK1/2 depletion prevented p53 accumulation after the addition of GSNO, which positions JNK1/2 upstream of the p53 response at low agonist concentrations. In line, JNK1/2 activation proceeded unaltered in p53-antisense transfected macrophages. However, with higher GSNO concentrations apoptotic transducing pathways, including p53 accumulation, were JNK1/2 unrelated. The regulation of mitogen-activated protein kinases by GSNO may help to define cell protective and destructive actions of reactive nitrogen species.  相似文献   

18.
为探讨脓肿分枝杆菌脓肿亚种和马赛亚种经Toll样受体2(Toll-like receptor 2,TLR2)介导的c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)和细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)诱导THP-1巨噬细胞内肿瘤坏死因子α(tumor necrosis factor α,TNF-α)和白细胞介素8(interleukin 8,IL-8)表达的相关分子机制,本研究将脓肿分枝杆菌脓肿亚种和马赛亚种感染THP-1巨噬细胞,细菌与巨噬细胞最佳感染之比为感染复数(multiplicity of infection,MOI)=3,用荧光定量聚合酶链反应(polymerase chain reaction,PCR)检测THP-1巨噬细胞感染两细菌亚种6 h后的胞内TNF-α和IL-8 mRNA水平,以及分别阻断TLR2、JNK 和ERK信号蛋白后TNF-α和IL-8 mRNA水平的变化。结果显示,脓肿分枝杆菌脓肿亚种和马赛亚种作用于THP-1巨噬细胞6 h后,均可诱导细胞内TNF-α和IL-8 mRNA水平显著上调,差异有统计学意义(P<0.05);分别阻断TLR2、JNK和ERK信号蛋白,脓肿亚种感染THP-1巨噬细胞后胞内TNF-α和IL-8 mRNA上调水平出现明显抑制,差异有统计学意义(P<0.05);分别阻断TLR2和JNK信号蛋白,马赛亚种感染THP-1巨噬细胞后胞内TNF-α和IL-8 mRNA上调水平均出现明显抑制,差异有统计学意义(P<0.05);而阻断ERK信号蛋白后,马赛亚种组仅见IL-8 mRNA水平明显抑制,差异有统计学意义(P<0.05),而TNF-α mRNA水平未见明显变化,差异无统计学意义(P>0.05)。本研究提示,脓肿分枝杆菌脓肿亚种和马赛亚种均可作用于TLR2,诱导THP-1细胞内TNF-α和IL-8 mRNA水平上调,脓肿亚种可经JNK和ERK信号蛋白诱导TNF-α mRNA上调,马赛亚种可经JNK信号蛋白诱导TNF-α mRNA上调;脓肿亚种和马赛亚种诱导IL-8 mRNA上调可能与JNK和ERK信号蛋白相关。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号