首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Light-induced absorbance change at 515 nm in spinach chloroplastswas studied in the temperature range from –2?C to 27?C.Lowering of temperature had no marked effect on the extentsof initial "light-on" spike and the steady-state change overthe temperature range examined, whereas the rate of recoveryof the 515-nm change was significantly reduced at lower temperatures.Above 15?C, recovery of the 515-nm change after continuous illuminationshowed a first-order kinetics. In contrast, the recovery wascomposed of a fast and a slow phases at lower temperatures. The fast phase of the recovery of the 515-nm change was acceleratedby carbonyl cyanide m-chlorophenylhydrazone, valinomycin plusK+ or sodium tetraphenylboron, while the slow phase was completelyeliminated in glutaraldehyde-fixed chloroplasts. Light-inducedchange in absorbance at 546 nm, an indicator of structural changesof membrane, showed almost the same dependency on temperatureas the slow phase of the recovery of the 515-nm change. Theseresults suggest that not only electric field formation acrossthe thylakoid membrane but also structural or conformationalchanges in the membrane participate in the 515-nm absorbancechange observed under steady illumination. (Received July 5, 1976; )  相似文献   

2.
The absorbance change at 515 nm induced by a short (7.6 µsec)light flash in spinach chloroplasts was studied at sub-roomtemperatures in relation to rapid H+ uptake into chloroplasts. Lowering of temperature caused a marked decrease in the rateof recovery of 515-nm absorbance change after a flash illumination.Initial rate of rapid H+ uptake, measured with absorbance changeof bromcresol purple (BCP), was also reduced at lower temperatures,in a parallel fashion. Half-recovery time of the absorbancechange at 515 nm and rise-time of the pH-indicating absorbanceincrease of BCP coincided well at each temperature studied.Values of the calculated activation energy for these two processeswere almost the same. The parallelism between the 515-nm absorbance change and therapid H+ uptake after a single flash illumination was also observedwhen the electric field decay and/or H+ translocation were acceleratedby ionophorous antibiotics, carbonylcyanide m-chlorophenylhydrazoneor phenazine methosulfate. From these results, it is suggestedthat the rapid H+ uptake into chloroplast is chemically coupledto electron transfer and at the same time diffusion- (or transport-)controlled. Membrane potential, reflected in the 515-nm absorbancechange is dissipated with the rapid H+ influx. A model for theelectron-transfer-coupled H+ translocation involving a plastosemiquinoneloop is presented. Dissipation of the illumination-formed inside-positivemembrane potential by the influx of H+ is explained by the model. (Received September 17, 1976; )  相似文献   

3.
The effects of dithiothreitol on absorbance changes at 505 and 515 nm in isolated lettuce chloroplasts were investigated. Dithiothreitol inhibited the ascorbate-dependent 505-nm change that is due to the de-epoxidation of violaxanthin to zeaxanthin. Dithiothreitol was effective for both light-induced de-epoxidation at pH 7 and dark de-epoxidation at pH 5. Titration of de-epoxidase activity with dithiothreitol resulted in complete inhibition at about 5 μmoles dithiothreitol per mg chlorophyll. Removal of dithiothreitol restored de-epoxidase activity. These results are consistent with the view that dithiothreitol inhibits violaxanthin de-epoxidation and the corresponding 505-nm change by reducing a disulfide that is required for de-epoxidase activity.

Dithiothreitol was effective in resolving absorbance changes due to violaxanthin de-epoxidation and other changes that were superimposed under some conditions. At 515 nm and in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), phenazine methosulfate, and ascorbate, dithiothreitol inhibited the large, slow and irreversible change which was due to de-epoxidation but not the fast and reversible so-called 515-nm change. At 505 nm and under similar conditions, dithiothreitol revealed the presence of a slow reversible change in addition to the one from de-epoxidation. Results with dithiothreitol showed that the absorbance change at 505 nm in the presence of DCMU, 2,6-dichlorophenolindophenol and ascorbate was due entirely to de-epoxidation. Similarly, absorbance changes at 515 nm also appeared to be mainly from de-epoxidation but with the presence of a small transient change due to some other components. It is suggested that dithiothreitol may be useful in resolving complex light-induced absorbance changes in other photosynthetic systems as well as in enabling new studies on reversible absorbance changes in the 500-nm region.  相似文献   


4.
The 515 nm absorbance change was studied in mesophyll and bundle sheath chloroplasts of maize, which contain different amounts of grana. The amplitude of the 515 nm signal (induced by 3 μs flashes repeated at 4 s intervals) has shown a correlation with the granum content of the samples. However, upon addition of N-methylphenazonium methosulphate the 515 nm signal became independent of the amount of grana: in agranal thylakoids a large pool of silent Photosystem I was activated and, as a result, the amplitude of the 515 nm signal of agranal chloroplasts increased to the level exhibited by granal chloroplasts.These data show that the 515 nm absorbance change is not limited to small closed vesicles like grana, but in the presence of suitable electron donors single lamellae of bundle sheath chloroplasts can also be active.  相似文献   

5.
The 515 nm absorbance change was studied in mesophyll and bundle sheath chloroplasts of maize, which contain different amounts of grana. The amplitude of the 515 nm signal (induced by 3 micro seconds flashes repeated at 4 s intervals) has shown a correlation with the granum content of the samples. However, upon addition of N-methylphenazonium methosulphate the 515 nm signal became independent of the amount of grana: in agranal thylakoids a large pool of silent Photosystem I was activated and, as a result, the amplitude of the 515 nm signal of agranal chloroplasts increased to the level exhibited by granal chloroplasts. These data show that the 515 nm absorbance change is not limited to small closed vesicles like grana, but in the presence of suitable electron donors single lamellae of bundle sheath chloroplasts can also be active.  相似文献   

6.
Roles of the coupling factor in light-induced proton transportand 515-nm absorption change were investigated in chloroplastswashed with high concentrations of Tris salts (pH 7.2). Washingthe chloroplasts with Tris-HCl and Tris-HNO3 buffers diminishedboth the light-induced pH rise and absorbance change at 515-nm,while Tris-H2SO4 buffer was much less effective. Inhibited activitiescould be restored by replacement of the coupling factor afterextraction with EDTA. N,N'-dicyclohexylcarbodiimide also restoredboth activities. Effects of various anions on the proton pumpand 515-nm shift were also investigated. The order of effectivenesswas NO3>Cl>SO42–. The role of thecoupling factor and its mode of action; the action mechanismsof Tris and anionsn energy transducing processes in chloroplasts,photophosphorylation, proton transport and absorbance changeat 515 nm, are discussed. 1Present address: Biology Department, College of Science andEngineering, Ryukyu University, Naha, Okinawa, Japan. (Received June 27, 1972; )  相似文献   

7.
Cytochromec (553.7Bryopsis maxima) isolated fromB. maxima had absorption maxima at 553.7, 523.0, 417.1 and 317.5 nm in its reduced form. Isosbestic points in the reduced minus oxidized difference spectrum were located at 561, 543, 528, 511, 436, 411 and 334 nm. The purified protein exhibited a molecular weight of 10,700. The midpoint potential for the cytochromec was estimated to be 372±5 mVin vitro at pH 7.0 and 365±5 mVin vivo.In vivo 80% of the cytochromec was in the reduced form. This cytochrome was located only in chloroplasts indicating that it functions in the photosynthetic electron transport as cytochromef. Chloroplasts contained one molecule of this cytochrome per 360 molecules of chlorophyll. The magnitude of the chemically induced absorbance changes for the cytochromoesin vivo were much smaller than the light-induced absorbance change at 561 nm. It is concluded that the light-induced 561 nm absorbance change characteristic of this alga is not mainly attributable to the redox reaction of cytochromesb andf in the chloroplasts.  相似文献   

8.
Flash-induced 515-nm and 475-nm absorbance changes in spinachchloroplasts were investigated in the presence of 3-(3,4-dichlorophenyl)-l,l-dimethylurea (DCMU). DCMU reduced the magnitude of the 515-nmabsorbance change by half and almost completely diminished theabsorbance change at 475-nm. The reduction of the 475-nm absorbancechange paralleled the inhibition of the photosystem II (PS II)light reaction. When chloroplasts were illuminated with red or far-red light,the ratio of A515/A475 changed depending on the photosystemactivated. Wide variations in the A515/A475 ratio observed insubchloroplast particle preparations were probably due to theenrichment and activation of one of the photosystems. We suggest that the photosynthetic pigments in the thylakoidmembrane are heterogeneously distributed, and chlorophyll bmolecules that may be responsible for the 475- nm absorbancechange are affected by the local field formed by the PS II lightreaction. On the other hand, an electric field due to the PSI reaction probably induced the absorbance change at 515-nm (Received February 24, 1978; )  相似文献   

9.
Distinctive characteristics of the photosystem I-induced 515-nmabsorbance change and the photosystem II-induced change wereanalyzed in spinach chloroplasts in the absence of added salt.Two types of changes were distinguished by 3-(3,4-dichloro-phenyl)-1,1-dimethylurea(DCMU), carbonylcyanide m-chlorophenylhydrazone (CCCP) and illuminationwith red or far-red light. Half-recovery time of the photosystem I-induced absorbance changewas shorter than that of over-all absorbance change and wasinsensitive to a low concentration (<0.50 µM) of CCCP. In the presence of DCMU, the 515-nm absorbance change decayedin parallel with the rapid protonation of reduced 2,6-dichloroindophenol(DCIP) or methyl viologen. This indicates that the photosystemI-induced local field is dissipated in the electron transferfrom photosystem I to an electron acceptor. Thus the mechanismin dissipation of electric field formed by photosystem I isdifferent from that induced by photosystem II where rapid protonationof plastosemiquinone anion may be directly involved in fielddissipation (Yamamoto, Y. and M. Nishimura: Plant & CellPhysiol. 18: 293–301 (1977)). (Received December 9, 1977; )  相似文献   

10.
The light-induced absorbance change at 515 nm, light-inducedhydrogen ion uptake and ATP formation were compared in chloroplastsand different types of sonicated subchloroplast particles. Noparallel relationship among the activities for ATP formation,hydrogen ion uptake and the 515-nm change was observed in differenttypes of preparations. NH4Cl inhibited ATP formation in chloroplastsbut had little effect on subchloroplast particles. In contrast,the light-induced hydrogen ion uptake was inhibited by NH4Clin a similar manner. Tetraphenylboron (TPB), at 1 µM, inhibited ATP formationby about 30% in both chloroplasts and subchloroplast particles.In the presence of TPB, ATP formation in chloroplasts was stronglyinhibited by NHC4Cl, but in subchloroplast particles the additionalinhibitory effect of NH4Cl was small. A synergistic inhibitionof photophosphorylation by valinomycin plus NH4Cl was much clearer.Although acceleration of the recovery of the 515-nm change byNH4Cl or valinomycin was moderate, the 515-nm change virtuallydisappeared when NH4Cl and valinomycin were added simultaneously. Although the membrane potential has a major role as the principaldriving force for ATP formation in subchloroplast particles,the simultaneous abolishment of the pH gradient and membranepotential may be required to uncouple ATP formation. 1Present address: Fukuoka Women's University, Kasumigaoka, Fukuoka813, Japan. 2Present address: Ryukyu University, Naha, Okinawa 903, Japan. (Received February 5, 1974; )  相似文献   

11.
The flash-induced P515 absorbance change in intact chloroplasts consists of a fast and a slow phase. There is disagreement in the literature over the origin of the slow phase. Here we argue that the flash-induced slow phase in P515 absorbance change is composed of two different components. One component is most probably due to the electrogenic Q-cycle associated with the cytochrome b/f complex. The second component has decay kinetics that are much slower than the electrogenic reactions. We suggest that the second component is due to a non-electrogenic reaction.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD dicyclohexylcarbodiimide - DQH2 durohydroquinone - MV methylviologen - P515 Absorbance change at 518 nm  相似文献   

12.
Photochemical, spectroscopic and fluorescence characteristicsof the active chromo-protein (ACP) of Anabaena cylindrica werestudied with preparations having different spectroscopic characteristics. Purified ACP preparations occasionally showed spectroscopiccharacteristics differing considerably from those of ordinaryACP. A spectroscopic difference in these preparations was observedonly in the relative absorbance in the 620 nm peak. Absorptionpeaks at 430, 460, 480 and 695 nm remained unchanged. Photochemicalactivity and fluorescence yield at 700 nm were fairly constantin these preparations, when excited at absorption bands otherthan 620 nm. Spectroscopic changes caused by heat and detergent (SDS) treatmentsoccurred only in the relative absorbance of the 620 nm peak.Photochemical and fluorescence characteristics of the treatedACP were the same as those of the ACP originally having a differentabsorption spectrum. A comparison of various ACP preparations indicates that ACPis a complex of two pigments, c-phycocyanin and a pigment witha 695 nm absorption maximum. The reduction in the molecularsize of ACP by SDS-treatment indicates that pigment 695 is farsmaller in its molecular size than c-phycocyanin. A possiblefunction of the two pigments in the photochemical reaction isalso discussed. (Received December 10, 1971; )  相似文献   

13.
The light-induced absorbance change at 515 nm and the light-inducedhydrogen ion uptake in chloroplasts are sensitive to physicaltreatment and to changes in ionic environment. High concentrationsof salts (chlorides) were inhibitory to the 515-nm absorbancechange. This inhibition was stronger in chloroplasts than insubchloroplast particles. In subchloroplast particles, NH4Clwas slightly stimulatory for the 515-nm change at low concentrations({small tilde}0.5 mM), as was the case with photophosphorylation. Tetraphenylboron (TPB), as a permeant anion, inhibited the 515-nmchange and the rate of hydrogen ion uptake. Tetraphenylarsonium(TPA) and tetraphenylphosphonium (TPP), both permeant cations,diminished the 515-nm change but did not affect the hydrogenion uptake. These results are analyzed in connection with adiscussion of the significance of the membrane potential andhydrogen ion gradient in the energy conversion of chloroplastsand subchloroplast particles. 1Present address: Fukuoka Women's University, Kasumigaoka, Fukuoka813, Japan. (Received February 5, 1974; )  相似文献   

14.
Addition of high concentrations (e.g., 1–100 mM) of ferricyanideto a chromatophorc suspension of Rhodopseudomonas spheroidescaused a change in the absorption spectrum of carotenoid (spheroidene),which was completely reversed by adding reducing reagents suchas ferrocyanide and ascorbate. The spectral change is representedby a shift in the absorption spectrum of carotenoid by 2 to2.5 nm towards the longer wavelength side. The presence of piericidinA, o-phenanthroline or Cl-CCP in the reaction mixture did notaffect the ferricyanide-induced absorbance change. Triton X-100markedly suppressed the magnitude of the change. The additionof ferricyanide also caused simultaneous absorbance changeswith maxima at 590 and 885 nm. These are ascribed to oxidationof the (bulk) bacteriochlorophyll, BChl 885. There was no absorptionchange at other peaks of bacteriochlorophyll in the infraredregion (i.e., 800 and 855 nm). Therefore, the ferricyanide-inducedabsorbance change of carotenoid did not represent an oxidation-reductionreaction of carotenoid but was intimately correlated with oxidationof BChl 885 in the chromatophores, as judged from similaritiesobserved with respect to the time course patterns, midpointpotential (545–555 mv) in the ferriferrocyanide reactionsystem, as well as behavior towards various reagents and inhibitorsadded. A similar change of carotenoid (i.e., 2–2.5 nmshift of absorption spectrum) was caused by addition of MgCl2to the chromatophores, but this did not induce any change inthe absorption spectrum of bacteriochlorophyll. The nature ofthe spectral change of carotenoid in chromatophores is discussed. (Received April 16, 1970; )  相似文献   

15.
When cotton (Gossypium hirsutum L., cv Acaia SJC-1) leaves kept in weak light were suddenly exposed to strong red actinic light a spectral absorbance change took place having the following prominent characteristics. (a) It was irreversible within the first four minute period after darkening. (b) The difference in leaf absorbance between illuminated and predarkened leaves had a major peak at 505 nanometers, a minor peak at 465 nanometers, a shoulder around 515 nanometers, and minor troughs at 455 and 480 nanometers. (c) On the basis of its spectral and kinetic characteristics this absorbance change can be readily distinguished from the much faster electrochromic shift which has a peak at 515 nanometers, from the slow, so-called light-scattering change which has a broad peak centered around 535 nanometers and is reversed upon darkening, and from absorbance changes associated with light-induced chloroplast rearrangements. (d) The extent and time course of this absorbance change closely matched that of the deepoxidation of violaxanthin to zeaxanthin in the same leaves. (e) Both the absorbance change and the ability to form zeaxanthin were completely blocked in leaves to which dithiothreitol (DTT) had been provided through the cut petlole. DTT treatment also caused strong inhibition of that component of the 535-nanometer absorbance change which is reversed in less than 4 minutes upon darkening and considered to be caused by increased light scattering. Moreover, DTT inhibited a large part of nonphotochemical quenching of chlorophyll fluorescence in the presence of excessive light. However, DTT had no detectable effect on the photon yield of photosynthesis measured under strictly rate-limiting photon flux densities or on the light-saturated photosynthetic capacity, at least in the short term. We conclude that it is possible to monitor light-induced violaxanthin de-epoxidation in green intact leaves by measurement of the absorbance change at 505 nanometers. Determination of absorbance changes in conjunction with measurements of photosynthesis in the presence and absence of DTT provide a system well suited for future studies of meachanisms of dissipation of excessive excitation energy in intact leaves.  相似文献   

16.
Structural and functional stability of isolated intact chloroplasts   总被引:1,自引:0,他引:1  
The effect of in vitro ageing on the ultrastructure, electron transport, thermoluminescence and flash-induced 515 nm absorbance change of isolated intact (type A) chloroplasts compared with non-intact (types B and C) chloroplasts was studied.When stored in the dark for 18 h at 5°C, the structural characteristics of intact and non-intact chloroplasts were only slightly altered. The most conspicuous difference between the two was in the coupling of the electron transport which was tighter and more stable in intact chloroplasts. Under dark-storage the activity of PS 2* decreased and the -20°C peak of thermoluminescence increased at the expense of the emission at +25°C. These changes were less pronounced in the intact chloroplasts. PS 1 activity and the flash-induced 515 nm absorbance change were not affected by dark-storage.When kept in the light (80 W m-2 (400–700 nm) for 1 h at 5°C), the thylakoid system of chloroplasts rapidly became disorganized. Although the initial activity of electron transport was much higher in intact chloroplasts, after a short period of light-storage the linear electron transport and the electron transport around PS 2 decreased in both types of preparations to the same low level. These changes were accompanied by an overall decrease of the intensity of thermoluminescence. PS 1 was not inhibited by light-storage, while the flash-induced 515 nm absorbance change was virtually abolished both in preparations of intact and non-intact chloroplasts.The data show that in stored chloroplast preparations intactness cannot be estimated reliably either by the FeCy test or by inspection under the electron microscope. These tests should be cross-checked on the level and coupling of the electron transport.  相似文献   

17.
Cytochrome b561 was removed from chromatophores of a photoanaerobicallygrown Rhodopseudomonas sphaeroides by deoxycholate-cholate andTriton X-100 treatments of the chromatophores. The cytochromewas purified by ammonium sulfate fractionation and gel filtration.Its molecular weight was 45,000 (45 kD) and it was composedof three subunits with molecular weights of 23 kD, 19 kD andless than 6 kD. The cytochrome preparation had absorption maximaat 414 nm in the oxidized form, and at 428, 530 and 561 nm inthe reduced form. Its pi was 4.8. The midpoint potential ofthis cytochrome was 153 mV at pH 7.0. The compound was autooxidizable,and it had cytochrome c oxidase activity. (Received May 16, 1983; Accepted September 8, 1983)  相似文献   

18.
In intact (type A) chloroplasts isolated from mesophyll protoplasts of maize (Zea mays L. convar. KSC 360) the flash-induced 515 nanometer absorbance change was much higher than in conventionally prepared (types B and C) chloroplasts. The 515 nanometer signal of type A chloroplasts exhibited a biphasic rise: the initial very fast rise (rise time «1 millisecond) was followed by a slow increase of absorbance (rise time 10 to 20 milliseconds). With decreasing degree of envelope retention the slow phase disappeared. Thus the biphasic rise of the flash-induced 515 nanometer absorbance change can be regarded as an attribute of intact chloroplasts.  相似文献   

19.
The flash-induced absorbance changes at 515 nanometers has been studied in chloroplasts and in digitonin subchloroplast particles of lettuce. The effect of various conditions and uncouplers was tested on the decay kinetics of this absorbance change and on ATP formation in the presence of phenazine methosulphate, either by continuous or flash illumination. It has been found that in chloroplasts, carbonyl cyanide m-chloromethoxyphenylhydrazone and nigericin in the presence of K+ accelerate the decay of the 515 change and inhibit ATP formation. However, under a variety of conditions the rate of decay of the 515 absorbance change was found to be unrelated to ATP formation. Preillumination, addition of valinomycin in the presence of K+, addition of Na+, or divalent cations accelerate the decay of the 515 absorbance change markedly but have no effect on ATP formation. Addition of phosphorylation reagents has no effect on the decay rate beyond that obtained by Mg2+ and inorganic phosphate. NH4Cl, and to some extent atebrin, while inhibiting ATP formation, do not affect the decay of the 515 absorbance change.  相似文献   

20.
Light-induced absorbance changes in the region around the redabsorption band of chlorophyll a were measured in cells andlamella fragments of Anacystis nidulans. In both materials,absorbance decreases were observed at 702 mµ and 682 mµ.(The pigments are designated as P700 and P680.) The nature ofP680 was investigated with special reference to its relationshipto P700. In the cells, light absorbed by chlorophyll a causedan absorbance decrease at 682 mµ; Simultaneous illuminationwith light absorbed by phycocyanin caused a partial recoveryof the absorbance decrease. Similar results were observed withthe light-induced absorbance change at 702 mµ. This indicatesthat P680 is also an electron carrier in the electron transportchain and occupies a place between the two photoreactions. Inlamella fragments, both the light-induced reversible absorbancechanges of P680 and P700 appeared in the presence of an electrondonor system; i.e., ascorbate and 2,6-dichlorophenolindophenolor N,N,N',N'-tetramethyl-l,4-phenylenediamine. The experimentsin which the oxidation-reduction potential of the reaction mediumwas changed showed that both P680 and P700 are one-electroncarriers, having a normal oxidation-reduction potential of 0.44v (assuming that the normal oxidation-reduction potential ofthe ferricyanide-ferrocyanide system is 0.409 v). A possibilitywas suggested that the absorbance change observed at 682 mµis another expression of the oxidation-reduction reaction ofP700). (Received October 30, 1968; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号