首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic subunit of cAMP-dependent protein kinase from rat adipose tissue was purified to apparent homogeneity by making use of the differential binding of the holoenzyme and the free catalytic subunit to CM-Sephadex and by gel chromatography. Stability and yield was improved by inclusion of nonionic detergent in all steps after dissociation of the holoenzyme. Isoelectric focusing separated enzyme species with pI values of 7.8 and 8.6–8.8. The amino acid composition was similar to the enzyme purified from other tissues. Enzyme activity was markedly unstable in dilute solutions (<5 μg/ml). Additions of nonionic detergent, glycerol, bovine serum albumin and, especially, histones stabilized the enzyme. With protamine, the catalytic subunit had an apparent Km of 60 μM and Vmax of 20 μmol·min−1·mg−1, corresponding values with mixed histones were 12 μM and 1.2 μmol·min−1·mg−1. With both protein substrates the apparent Km for ATP was 11 μM. Concentrations of Mg2+ above 10 mM were inhibitory. Histone phosphorylation was inhibited by NaCl (50% at 0.5 M NaCl) while protamine phosphorylation was stimulated (4-fold at 1 M NaCl). Inorganic phosphate inhibited both substrates (histones: 50% at 0.3 M, and protamine: 50% at 0.5 M). pH optimum was around pH 9 with both substrates. The catalytic subunit contained 2.0 (range of three determinations, 1.7–2.3) mol phosphate/mol protein. It was autophosphorylated and incorporated 32Pi from [γ-32P]ATP in a time-dependent process, reaching saturation when approx. 0.1 mol phosphate/mol catalytic subunit was incorporated.  相似文献   

2.
We have addressed the question, whether the reduction of caffeate in Acetobacterium woodii strain NZva16 is coupled to ATP synthesis by electron transport phosphorylation. The following results were obtained: 1. Cultures of A. woodii with H2 and CO2, grew to greater cell densities, when caffeate was also present. Caffeate was reduced to give hydrocaffeate and less acetate was formed. The cell yield based on the amount of caffeate reduced was approximately 1 g dry cells/mol. 2. Non-growing bacterial suspensions catalyzed the reduction of caffeate by H2. The specific activity (0.2–1.0 mol · min–1 · mg–1 bacterial protein) was as high as expected for a catabolic reaction. 3. The ATP content of bacteria incubated, with H2 increased from < 1 to about 7 mol per g cellular protein on the addition of caffeate. The ATP yield was calculated as 0.06 mol ATP · mol–1 caffeate from the initial velocity of ATP formation and the activity of caffeate reduction. Valinomycin together with nigericin inhibited ATP formation and caused a 2–3-fold increase of the activity of caffeate reduction. Protonophores were without, effect. 4. Caffeate in the presence of H2 caused the uptake of tetraphenylphosphonium cation by the bacteria. The uptake was abolished by valinomycin plus nigericin, and was considerably enhanced by monensin. Protonophores were without effect, even in the presence of monensin. It is concluded that caffeate reduction by H2 is coupled to ATP formation by electron transport phosphorylation. However, the failure of protonophores to prevent phosphorylation and TPP uptake cannot be explained.Abbreviations Caffeate 3,4-Dihydroxycinnamate - Hydrocaffeate 3,4-dihydroxyphenylpropionate - TPP+ tetraphenylphosphonium cation - FCCP carbonylcyanide-4-trifluoromethoxyphenylhydrazone - TTGB 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazol - TCS 3,5,3,4-tetrachlorosalicylanilide  相似文献   

3.
4.
3H 2-azido-4-nitrophenol, a photoactive uncoupler, has been synthesized, and its uncoupling action on oxidative phosphorylation and its binding to the mitochondrial membrane have been studied. The uncoupler bound covalently to the mitochondrial membrane on photoirradiation was 3–4 times that bound reversibly in the absence of light. When irradiation was carried out in the presence of serum albumin, covalent binding was significantly depressed. The pattern of loss of ATP-Pi' exchange activity with increasing amounts of the uncoupler suggests that serum albumin prevents the binding of the uncoupler to the functional sites as well. Polyacrylamide gel electrophoresis of photoaffinity labeled submitochondrial particles in the presence of sodium dodecyl sulfate revealed that a 9000 dalton peptide bound high levels of uncoupler. Other proteins in the molecular weight range of 20,000–40,000 and 55,000 were also labeled. Photolysis in the presence of serum albumin or ATP decreased the covalent binding of the uncoupler to all the proteins, but particularly to the 20,000 dalton component. Soluble ATPase and the mitochondrial proteolipid purified from labeled mitochondria showed the presence of label.Abbreviations NPA 2-azido-4-nitrophenol - DNP 2,4-dinitrophenol - DCCD N, N1-dicyclohexylcarbodiimide - AE particles=bovine heart submitochondrial particles prepared by treatment with NH4OH and EDTA at pH 8.8 - RCI respiratory control index - BSA bovine serum albumin  相似文献   

5.
Role of magnesium in the plasma membrane ATPase of red beet   总被引:2,自引:2,他引:0       下载免费PDF全文
The phosphorylation technique was used to assess the role of Mg in the red beet (Beta vulgaris L.) plasma membrane ATPase. When an excess of ethylenediaminetetraacetate (Tris salt, pH 6.5) was added to phosphorylation reactions at steady-state, the phosphorylation level declined exponentially and the rate constant for dephosphorylation was similar to that observed when phosphorylation reactions were chased with unlabeled ATP. When KCl was included with the EDTA chase, a 2.4-fold increase in the turnover of the phosphoenzyme was observed. Thus, the formation of the phosphorylated intermediate but not its breakdown requires free Mg to be present. When an excess of unlabeled ATP containing MgSO4 was added to plasma membranes incubated for 20 seconds with [γ-32P]ATP in the absence of MgSO4, a burst of phosphorylation was observed that declined exponentially. The rate constant for this decline was similar to that observed for phosphoenzyme turnover after initial labeling in the presence of MgSO4. Extrapolation of this kinetic plot to zero time indicated that ATP binding can occur when MgSO4 is absent. It is proposed that Mg has a specific role in the transphosphorylation reaction of the terminal phosphate group of ATP to the enzyme.  相似文献   

6.
The effect of trifluoperazine (TFP) on the ATPase activity of soluble and paniculate F1ATPase and on ATP synthesis driven by succinate oxidation in submitochondrial particles from bovine heart was studied at pH 7.4 and 8.8. At the two pH. TFP inhibited ATP hydrolysis. Inorganic phosphate protected against the inhibiting action of TFP. The results on the effect of various concentrations of phosphate in the reversal of the action of TFP on hydrolysis at pH 7.4 and 8.8 showed that H2PO 4 is the species that competes with TFP. The effect of TFP on oxidative phosphorylation was studied at concentrations that do not produce uncoupling or affect the aerobic oxidation of succinate (<15M). TFP inhibited oxidative phosphorylation to a higher extent at pH 8.8 than at pH 7.4; this was through a diminution in theV max, and an increase in theK m for phosphate. Data on phosphate uptake during oxidative phosphorylation at several pH showed that H2PO 4 is the true substrate for oxidative phosphorylation. Thus, in both synthesis and hydrolysis of ATP, TFP and H2PO 4 interact with a common site. However, there is a difference in the sensitivity to TFP of ATP synthesis and hydrolysis; this is more noticeable at pH 8.8, i.e. ATPase activity of soluble F1 remains at about 40% of the activity of the control in a concentration range of TFP of 40–100M, whereas in oxidative phosphorylation 14M TFP produces a 60% inhibition of phosphate uptake.  相似文献   

7.
ATP and adenylylimidodiphosphate (AdoPP[NH]P) bind to (Na+ + K+)-ATPase in the absence of Mg2+ (EDTA present) with a homogeneous but 15-fold different affinity, the Kd values being 0.13 μM and 1.9 μM, respectively. The binding capacities of the two nucleotides are nearly equal and amount to 3.9 and 4 nmol/mg protein or 1.7 and 1.8 mol/mol (Na+ + K+)-ATPase, respectively. The Kd value for ATP is equal to the Km for phosphorylation by ATP (0.05–0.25 μM) and the binding capacity is equivalent to the phosphorylation capacity of 1.8 mol/mol (Na+ + K+)-ATPase. Hence, the enzyme contains two high-affinity nucleotide binding and phosphorylating sites per molecule, or one per α-subunit. Additional low-affinity nucleotide binding sites are elicited in the presence of Mg2+, as shown by binding studies with the non-phosphorylating (AdoPP[NH]P). The Kd and binding capacity for AdoPP[NH]P at these sites is dependent on the Mg2+ concentration. The Kd increases from 0.06 mM at 0.5 mM Mg2+ to a maximum of 0.26 mM at 2 mM Mg2+ and the binding capacity from 1.5 nmol/mg protein at 0.5 mM Mg2+ to 3.3 nmol/mg protein at 4 mM Mg2+. Extrapolation of a double reciprocal plot of binding capacity vs. total Mg2+ concentration yields a maximal binding capacity at infinite Mg2+ concentration of 3.8 nmol/mg protein or 1.7 mol/mol (Na+ + K+)-ATPase. The Kd for Mg2+ at the sites, where it exerts this effect, is 0.8 mM. The Kd for the high-affinity sites increases from 1.5–1.9 μM in the absence of Mg2+ to a maximum of 4.2 μM at 2 mM Mg2+ concentration. The binding capacity of these sites (1.8 mol/mol enzyme) is independent of the Mg2+ concentration. Hence, Mg2+ induces two low-affinity non-phosphorylating nucleotide binding sites per molecule (Na+ + K+)-ATPase in addition to the two high-affinity, phosphorylating nucleotide binding sites.  相似文献   

8.
Ca2+-activated basal adenylate cyclase (AC) in rabbit sinoatrial node cells (SANC) guarantees, via basal cAMP/PKA-calmodulin/CaMKII-dependent protein phosphorylation, the occurrence of rhythmic, sarcoplasmic-reticulum generated, sub-membrane Ca2+ releases that prompt rhythmic, spontaneous action potentials (APs). This high-throughput signaling consumes ATP.

Aims

We have previously demonstrated that basal AC-cAMP/PKA signaling directly, and Ca2+ indirectly, regulate mitochondrial ATP production. While, clearly, Ca2+-calmodulin-CaMKII activity regulates ATP consumption, whether it has a role in the control of ATP production is unknown.

Methods and Results

We superfused single, isolated rabbit SANC at 37°C with physiological saline containing CaMKII inhibitors, (KN-93 or autocamtide-2 Related Inhibitory Peptide (AIP)), or a calmodulin inhibitor (W-7) and measured cytosolic Ca2+, flavoprotein fluorescence and spontaneous AP firing rate. We measured cAMP, ATP and O2 consumption in cell suspensions. Graded reductions in basal CaMKII activity by KN-93 (0.5–3 µmol/L) or AIP (2–10 µmol/L) markedly slow the kinetics of intracellular Ca2+ cycling, decrease the spontaneous AP firing rate, decrease cAMP, and reduce O2 consumption and flavoprotein fluorescence. In this context of graded reductions in ATP demand, however, ATP also becomes depleted, indicating reduced ATP production.

Conclusions

CaMKII signaling, a crucial element of normal automaticity in rabbit SANC, is also involved in SANC bioenergetics.  相似文献   

9.
The Cr(V) complexes, bis(2-ethyl-2-hydroxybutyrato)oxochromate(V) ([OCrV(ehba)2]) and (2,2-bis(hydroxymethyl)-2-(bis(2-hydroxyethyl)amino)ethanolato)oxochromate(V) ([OCrV(BT)]2−), were reacted with a series of deoxyribonucleotide triphosphates. Oxidation of deoxyribose at C4′ was observed by measuring the amount of thiobarbituric acid reactive species (TBARS) produced in these reactions. For both compounds, the TBARS obtained with purine nucleotides was between 2.25 and 3.5 times greater than what was observed with pyrimidine nucleotide. This result suggests that the identity of the nucleic acid base can influence the hydrogen atom abstraction at C4′. Overall, the amount of product obtained with [OCrV(BT)]2− was significantly less than what was observed with [OCrV(ehba)2], indicating that these two Cr(V) model complexes may oxidize DNA differently.  相似文献   

10.
Summary Elementary Na+ currents were recorded at 19°C in cell attached and inside-out patches from cultured neonatal rat cardiocytes in order to study the effect of cAMP and other 6-aminopurines.The treatment of the cardiocytes with db-cAMP (1×10–3 mol/liter) led to a decline of reconstructed macroscopic peakI Na to 62±7.6% of the initial control value. This reduction in NP0 was mostly accompanied by a decrease in burst activity. Openstate kinetics were preserved even in DPI-modified, noninactivating Na+ channels. Since the stimulator of the adenylate cyclase, forskolin (1×10–6 mol/liter), evoked a similar pattern of response, the NP0 decrease can be considered as the functional correlate of Na+ channel phosphorylation brought about by cAMP-dependent protein kinase. As found in inside-out patches, cAMP (1×10–3 mol/liter) remained effective under cell-free conditions and reduced reconstructed macroscopic peakI NA to about 50% of the initial control value when the absence of Mg-ATP at the cytoplasmic membrane surface prevents phosphorylation reactions. A very similar response developed in the cytoplasmic presence of other 6-aminopurines including ATP (1×103 mol/liter), adenosine (1×10–4 mol/liter), adenine (1×10–5 mol/liter) and hypoxanthine (1×10–5 mol/liter). This susceptibility to adenine suggests that cardiac Na+ channelsin situ could sense intracellular fluctuations of adenine nucleotides, most likely of ATP.  相似文献   

11.
The present study was conducted in a potted experiment to examine the effects of chromium pollution on absorption of mineral nutrients and some morpho-physiological attributes of two sunflower (Helianthus annuus L.) hybrids (FH-331 and FH-259) in the presence and absence of ethylene diamine tetra acetic acid (EDTA) used as a chelating agent. Four concentrations of chromium (Cr3+) i.e., 0, 20, 30 and 40 mg kg?1 with and without 0.3 g kg?1, EDTA as chelating agent were applied to 25-day-old sunflower plants. A gradually decreasing trend in absorption of all minerals and other parameters studied were observed. Different treatments of Cr3+ as well as Cr3+ and EDTA significantly reduced root and shoot fresh weight; however, root, shoot and achene Cr3+ contents of two sunflowers hybrids under higher chromium and EDTA stress varied significantly whereas movement of Cr3+ contents to leaves was non-significant. Absorption of Na+, K+, N2 and P through roots and shoots significantly reduced with increasing concentration of Cr3+ treatments. In fact addition of EDTA to the medium further enhanced the toxicity of chromium.  相似文献   

12.
Functional chloroplasts from photoheterotrophic Euglena gracilis can be isolated in isoosmotic gradients of 10–80% Percoll. The chloroplasts display rates of CO2 dependent O2 evolution and CO2 fixation of 30–50 mol mg-1 chlorophyll h-1 or 25–35% of the net O2 evolution by the whole cells and appear to be strikingly different from spinach chloroplasts in several respects: 1. tolerance to high concentration of orthophosphate in the assay medium; 2. inability to support oxaloacetate-dependent O2 evolution; 3. ability to support only low to moderate rates of 3-phosphoglycerate-dependent O2 evolution; 4. an apparent absence of a phosphate translocator in the terms described by Heldt and Rapley ([1970] FEBS Lett. 10, 143–148).University of California, Dept. of Plant and Soil Biology, 108 Hilgard Hall, Berkeley, CA 94720 USA  相似文献   

13.
Trivalent chromium (Cr3+) is essential for animal and human health, whereas hexavalent Cr (CrO4 2−) is a potent carcinogen and extremely toxic to animals and humans. Thus, the accumulated Cr in food plants may represent potential health hazards to animals and humans if the element is accumulated in the hexavalent form or in high concentrations. This study was conducted to determine the extent to which various vegetable crops absorb and accumulate Cr3+ and CrO4 2− into roots and shoots and to ascertain the different chemical forms of Cr in these tissues. Two greenhouse hydroponic experiments were performed using a recirculating-nutrient culture technique that allowed all plants to be equally supplied with Cr at all times. In the first experiment, 1 mg L−1 Cr was supplied to 11 vegetable plant species as Cr3+ or CrO4 2−, and the accumulation of Cr in roots and shoots was compared. The crops tested included cabbage (Brassica oleracea L. var. capitata L.), cauliflower (Brassica oleracea L. var. botrytis L.), celery (Apium graveolens L. var. dulce (Mill.) Pers.), chive (Allium schoenoprasum L.), collard (Brassica oleracea L. var. acephala DC.), garden pea (Pisum sativum L.), kale (Brassica oleracea L. var. acephala DC.), lettuce (Lactuca sativa L.), onion (Allium cepa L.), spinach (Spinacia oleracea L.), and strawberry (Fragaria ×  ananassaDuch.). In the second experiment, X-ray absorption spectroscopy (XAS) analysis on Cr in plant tissues was performed in roots and shoots of various vegetable plants treated with CrO4 2− at either 2 mg Cr L−1 for 7 d or 10 mg Cr L−1 for 2, 4 or 7 d. The crops used in this experiment included beet (Beta vulgaris L. var. crassa (Alef.) J. Helm), broccoli (Brassica oleracea L. var. Italica Plenck), cantaloupe (Cucumis melo L. gp. Cantalupensis), cucumber (Cucumis sativus L.), lettuce, radish (Raphanus sativus L.), spinach, tomato (Lycopersicon lycopersicum (L.) Karsten), and turnip (Brassica rapa L. var. rapifera Bailey). The XAS speciation analysis indicates that CrO4 2− is converted in the root to Cr3+ by all plants tested. Translocation of both Cr forms from roots to shoots was extremely limited and accumulation of Cr by roots was 100-fold higher than that by shoots, regardless of the Cr species supplied. Highest Cr concentrations were detected in members of the Brassicaceae family such as cauliflower, kale, and cabbage. Based on our observations and previous findings by other researchers, a hypothesis for the differential accumulation and identical translocation patterns of the two Cr ions is proposed. Received: 27 February 1998 / Accepted: 2 April 1998  相似文献   

14.
Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP), and phosphocreatine (CrP) have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 μmol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 μmol min−1 g−1, model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded hypoperfusion. These findings suggest that the observed stability of energy metabolites emerges as a property of a properly constructed model of cardiac substrate transport and mitochondrial metabolism. In addition, the validated model provides quantitative predictions of changes in phosphate metabolites during cardiac ischemia.  相似文献   

15.
Intact spinach chloroplasts incorporated 35SO42− into sulfoquinovosyldiacylglycerol in the dark at rates equivalent to those previously reported for illuminated chloroplasts provided that either ATP itself or an ATP-generating system was added. No additional reductant was necessary for SQDG synthesis by chloroplasts. The optimal concentration of ATP was between 2 and 3 millimolar. Rates of synthesis up to 2.6 nanomoles per milligram chlorophyll per hour were observed. UTP, GTP, and CTP could not substitute for ATP. Incubation of UTP with ATP (1:1) stimulated synthesis of sulfoquinovosyldiacylglycerol. No additional stimulation of the reaction was observed upon addition of other nucleoside triphosphates with ATP. For the generation of ATP in the chloroplast, addition of dihydroxyacetone phosphate alone did not promote synthesis of sulfoquinovosyldiacylglycerol, but in combination with inorganic phosphate and oxaloacetate, rates of synthesis up to 3.2 nanomoles per milligram chlorophyll per hour were observed. Dark synthesis was optimal in the presence of 2 millimolar dihydroxyacetone phosphate, 2 millimolar oxaloacetate, and 1 millimolar KH2PO4.  相似文献   

16.
Otacilio C. Moreira 《BBA》2005,1708(3):411-419
The bidentate complex of ATP with Cr3+, CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca2+-ATPase and the Na+,K+-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca2+ and Na+, respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca2+-ATPase. The complex inhibited with similar efficiency the Ca2+-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T1/2 = 30 min at 37 °C) with a Ki = 28 ± 9 μM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg2+ but unaltered when Ca2+ was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca2+ occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La3+ with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca2+ at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca2+ promoted by the plasma membrane Ca2+-ATPase goes through an enzymatic phospho-intermediate that maintains Ca2+ ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.  相似文献   

17.
Philip G. Koga  Richard L. Cross 《BBA》1982,679(2):269-278
1. Soluble beef-heart mitochondrial ATPase (F1) was incubated with [3H]pyridoxal 5′-phosphate and the Schiffbase complex formed was reduced with sodium borohydride. Spectral measurements indicate that lysine residues are modified and gel electrophoresis in the presence of detergent shows the tritium label to be associated with the two largest subunits, α and β. 2. In the absence of protecting ligands, the loss of ATP hydrolysis activity is linearly dependent on the level of pyridoxylation with complete inactivation correlating to 10 mol pyridoxamine phosphate incorporated per mol enzyme. Partial inactivation of F1 with pyridoxal phosphate has no effect on either the Km for ATP or the ability of bicarbonate to stimulate residual hydrolysis activity, suggesting a mixed population of fully active and fully inactive enzyme. 3. In the presence of excess magnesium, the addition of ADP or ATP, but not AMP, decreases the rate and extent of modification of F1 by pyridoxal phosphate. The non-hydrolyzable ATP analog, 5′-adenylyl-β, γ-imidodiphosphate, is particularly effective in protecting F1 against both modification and inactivation. Efrapeptin and Pi have no effect on the modification reaction. 4. Prior modification of F1 with pyridoxal phosphate decreases the number of exchangeable nucleotide binding sites by one. However, pyridoxylation of F1 is ineffective in displacing endogenous nucleotides bound at non-catalytic sites and does not affect the stoichiometry of Pi binding. 5. The ability of nucleotides to protect against modification and inactivation by pyridoxal phosphate and the loss of one exchangeable nucleotide site with the pyridoxylation of F1 suggest the presence of a positively charged lysine residue at the catalytic site of an enzyme that binds two negatively charged substrates.  相似文献   

18.
Incubation with [γ-32P]ATP of Golgi vesicles, prepared from the mammary tissue of lactating rats, resulted in the phosphorylation of four of the proteins in the preparation which were resolvable by sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis. Three of these had electrophoretic properties identical to the three major caseins of rat milk: their phosphorylation was approximately linear with respect to time during the course of the short (1 min) incubations analyzed. The fourth component (Mr,app. 70 000) behaved differently. It was very rapidly phosphorylated to a maximum level within 5 s at 0°C; its 32P-content declined thereafter, with a for dephosphorylation of approx. 20 s. The extent of 32P incorporation into this component, measured after incubation for 20 s at 0°C with [γ-32P]ATP, was sensitive to the concentration of Ca2+ in the incubation medium, being enhanced at low concentrations (<10−8 M) of Ca2+ and depressed at high (10−4 M) ones. Inclusion of ADP (100 μM) in such incubations also depressed 32P incorporation into the 70 kDa component. This phosphoprotein was further distinguished from the other three by virtue of the lability of its incorporated phosphorus to treatment with hot trichloroacetic acid. The properties and possible function of this phosphoprotein are discussed in relation to the ATP-dependent Ca2+ transport that occurs in this Golgi vesicle preparation.  相似文献   

19.
A functional F0F1 ATP synthase that contains the endogenous inhibitor protein (F0F1I) was isolated by the use of two combined techniques [Adolfsen, R., McClung, J.A., and Moudrianakis, E. N. (1975).Biochemistry 14, 1727–1735; Dreyfus, G., Celis, H., and Ramirez, J. (1984).Anal. Biochem. 142, 215–220]. The preparation is composed of 18 subunits as judged by SDS-PAGE. A steady-state kinetic analysis of the latent ATP synthase complex at various concentrations of ATP showed aV max of 1.28mol min–1 mg–1, whereas theV max of the complex without the inhibitor was 8.3mol min–1 mg–1. In contrast, theK m for Mg-ATP of F0F1 I was 148M, comparable to theK m value of 142M of the F0F1 complex devoid of IF1. The hydrolytic activity of the F0F1I increased severalfold by incubation at 60C at pH 6.8, reaching a maximal ATPase activity of 9.5mol min–1 mg–1; at pH 9.0 a rapid increase in the specific activity of hydrolysis was followed by a sharp drop in activity. The latent ATP synthase was reconstituted into liposomes by means of a column filtration method. The proteoliposomes showed ATP-Pi exchange activity which responded to phosphate concentration and was sensitive to energy transfer inhibitors like oligomycin and the uncouplerp-trifluoromethoxyphenylhydrazone.  相似文献   

20.
Summary NADH oxidation with the particulate fraction from dark aerobically grown Rhodospirillum rubrum is significantly stimulated by the addition of phosphate (Pi) and Mg++, or Pi, Mg++, ATP and the hexokinase-glucose system. K m values for Pi in NADH oxidation and phosphorylation are 10–3 m and 8×10–4 m, respectively. These K m values are almost the same as in corresponding photophosphorylation and oxidative phosphorylation catalyzed with chromatophores. As in the case of NADH oxidation with chromatophores, NADH oxidation with the particulate fraction has an optimal pH at 7.5 without additions, which is shifted to 6.9 by the addition of Pi and Mg++, or Pi, Mg++, ATP and the hexokinase-glucose system. The optimal pH for coupled phosphorylation is 6.9. 10 g per ml of oligomycin can suppress stimulation of NADH oxidation by Pi, or by the energy trapping system, and prevent the shift of optimal pH. The particulate fraction can catalyze Pi-incorporation into glucose-6-phosphate without externally added ATP, so that Pi-incorporation is inhibited by oligomycin. From these findings, it is concluded that NADH oxidation in the particulate fraction is tightly coupled to phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号