共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used Xenopus egg extracts to investigate the effects of the antitumor drug daunomycin on DNA replication in vitro. Xenopus sperm nuclei replicated nearly synchronously in our egg extracts, thereby allowing us to determine the effects of the drug on both replication initiation and elongation. Titration experiments demonstrated that daunomycin effectively inhibited replication in the extract, with 50% inhibition at a total drug concentration of 2.7 μM. However, a high concentration of daunomycin 150 μM) also inhibited nuclear envelope assembly, a prerequisite for the initiation of replication in this system. Therefore, to bypass the effects of daunomycin on nuclear envelope assembly, sperm nuclei were preassembled in extract prior to drug addition. Initiation of replication in preassembled nuclei was also inhibited by daunomycin, with 50% inhibition at a drug concentration of 3.6 μM. At low drug concentrations, where replication did occur, the synchrony of initiations within individual nuclei was lost. This drug-induced disruption of initiation events may provide important clues regarding the mechanism(s) by which these events are coordinated in eukaryotic cells. Daunomycin also inhibited replication elongation in preassembled, preinitiated nuclei. However, the concentration of drug required for 50% inhibition of elongation was nearly fourfold higher than that required for inhibition of initiation. Taken together, these data demonstrate that Xenopus egg extract can be used to investigate the effects of DNA-binding antitumor drugs on a number of interrelated cellular processes, many of which are less tractable in whole cell systems. J. Cell. Biochem. 64:476–491. © 1997 Wiley-Liss, Inc. 相似文献
2.
Determination of initiation of DNA replication before and after nuclear formation in Xenopus egg cell free extracts 总被引:5,自引:2,他引:5
《The Journal of cell biology》1993,123(6):1321-1331
Xenopus egg extracts prepared before and after egg activation retain M- and S-phase specific activity, respectively. Staurosporine, a potent inhibitor of protein kinase, converted M-phase extracts into interphase- like extracts that were capable of forming nuclei upon the addition of sperm DNA. The nuclei formed in the staurosporine treated M-phase extract were incapable of replicating DNA, and they were unable to initiate replication upon the addition of S-phase extracts. Furthermore, replication was inhibited when the staurosporine-treated M- phase extract was added in excess to the staurosporine-treated S-phase extract before the addition of DNA. The membrane-depleted S-phase extract supported neither nuclear formation nor replication; however, preincubation of sperm DNA with these extracts allowed them to form replication-competent nuclei upon the addition of excess staurosporine- treated M-phase extract. These results demonstrate that positive factors in the S-phase extracts determined the initiation of DNA replication before nuclear formation, although these factors were unable to initiate replication after nuclear formation. 相似文献
3.
Chromosome architecture can dictate site-specific initiation of DNA replication in Xenopus egg extracts 总被引:4,自引:0,他引:4 下载免费PDF全文
《The Journal of cell biology》1996,135(5):1207-1218
Xenopus egg extracts initiate DNA replication specifically at the dihydrofolate reductase (DHFR) origin locus with intact nuclei from late G1-phase CHO cells as a substrate, but at nonspecific sites when purified DNA is assembled by the extract into an embryonic nuclear structure. Here we show that late G1-phase CHO nuclei can be cycled through an in vitro Xenopus egg mitosis, resulting in the assembly of an embryonic nuclear envelope around G1-phase chromatin. Surprisingly, replication within these chimeric nuclei initiated at a novel specific site in the 5' region of the DHFR structural gene that does not function as an origin in cultured CHO cells. Preferential initiation at this unusual site required topoisomerase II-mediated chromosome condensation during mitosis. Nuclear envelope breakdown and reassembly in the absence of chromosome condensation resulted in nonspecific initiation. Introduction of condensed chromosomes from metaphase- arrested CHO cells directly into Xenopus egg extracts was sufficient to elicit assembly of chimeric nuclei and preferential initiation at this same site. These results demonstrate clearly that chromosome architecture can determine the sites of initiation of replication in Xenopus egg extracts, supporting the hypothesis that patterns of initiation in vertebrate cells are established by higher order features of chromosome structure. 相似文献
4.
5.
The nuclear membrane determines the timing of DNA replication in Xenopus egg extracts 总被引:2,自引:7,他引:2 下载免费PDF全文
We have exploited a property of chicken erythrocyte nuclei to analyze the regulation of DNA replication in a cell-free system from Xenopus eggs. Many individual demembranated nuclei added to the extract often became enclosed within a common nuclear membrane. Nuclei within such a "multinuclear aggregate" lacked individual membranes but shared the perimeter membrane of the aggregate. Individual nuclei that were excluded from the aggregates initiated DNA synthesis at different times over a 10-12-h period, as judged by incorporation of biotinylated dUTP into discrete replication foci at early times, followed by uniformly intense incorporation at later times. Replication forks were clustered in spots, rings, and horseshoe-shaped structures similar to those described in cultured cells. In contrast to the asynchronous replication seen between individual nuclei, replication within multinuclear aggregates was synchronous. There was a uniform distribution and similar fluorescent intensity of the replication foci throughout all the nuclei enclosed within the same membrane. However, different multinuclear aggregates replicated out of synchrony with each other indicating that each membrane-bound aggregate acts as an individual unit of replication. These data indicate that the nuclear membrane defines the unit of DNA replication and determines the timing of DNA synthesis in egg extract resulting in highly coordinated triggering of DNA replication on the DNA it encloses. 相似文献
6.
The Xenopus early embryonic cell cycle consists of rapid oscillations between mitosis and DNA synthesis. We used ubiquitin (Ub)-dependent proteolysis inhibitors to determine whether Ub-mediated proteolysis regulates the initiation of DNA replication in Xenopus egg extract. Methylated Ub, a chemically modified Ub that cannot form chains, and S5a, a Ub chain-binding subunit of the 26S proteasome, were added to extract at concentrations known to inhibit cyclin B proteolysis and their effects on cell cycle progression and DNA replication were examined. DNA replication initiated concomitant with controls and proceeded in a semiconservative fashion in the presence of both methylated Ub and S5a. However, mitotic progression was halted, showing that the inhibitors were functional. We conclude that initiation of DNA replication is not regulated by Ub-dependent proteolysis in the early Xenopus cell cycle. 相似文献
7.
Chromosomal replication is sensitive to the presence of DNA-damaging alkylating agents, such as methyl methanesulfonate (MMS). MMS is known to inhibit replication though activation of the DNA damage checkpoint and through checkpoint-independent slowing of replication fork progression. Using Xenopus egg extracts, we now report an additional pathway that is stimulated by MMS-induced damage. We show that, upon incubation in egg extracts, MMS-treated DNA activates a diffusible inhibitor that blocks, in trans, chromosomal replication. The downstream effect of the inhibitor is a failure to recruit proliferating cell nuclear antigen, but not DNA polymerase alpha, to the nascent replication fork. Thus, alkylation damage activates an inhibitor that intercepts the replication pathway at a point between the polymerase alpha and proliferating cell nuclear antigen execution steps. We also show that activation of the inhibitor does not require the DNA damage checkpoint; rather, stimulation of the pathway described here results in checkpoint activation. These data describe a novel replication arrest pathway, and they also provide an example of how subpathways within the DNA damage response network are integrated to promote efficient cell cycle arrest in response to damaged DNA. 相似文献
8.
Xenopus egg extract provides an extremely powerful approach in the study of cell cycle regulated aspects of nuclear form and function. Each egg contains enough membrane and protein components to support multiple rounds of cell division. Remarkably, incubation of egg extract with DNA in the presence of an energy regeneration system is sufficient to induce formation of a nuclear envelope around DNA. In addition, these in vitro nuclei contain functional nuclear pore complexes, which form de novo and are capable of supporting nucleocytoplasmic transport. Mitotic entry can be induced by the addition of recombinant cyclin to an interphase extract. This initiates signaling that leads to disassembly of the nuclei. Thus, this cell-free system can be used to decipher events involved in mitotic remodeling of the nuclear envelope such as changes in nuclear pore permeability, dispersal of membrane, and disassembly of the lamina. Both general mechanisms and individual players required for orchestrating these events can be identified via biochemical manipulation of the egg extract. Here, we describe a procedure for the assembly and disassembly of in vitro nuclei, including the production of Xenopus egg extract and sperm chromatin DNA. 相似文献
9.
Xenopus egg extracts provide a powerful tool for studying the formation and function of chromosomes. Two alternative protocols are generally used to obtain mitotic chromosomes. The first one uses a direct chromatin assembly from sperm nuclei in cytostatic factor (CSF)-arrested meiotic extracts, while the second is based on transition of sperm DNA through a replication step with subsequent reestablishment of CSF arrest. In this study we show that general kinetochore structure is disrupted in chromosomes assembled directly in CSF egg extracts: The amounts of outer kinetochore proteins such as Bub1, BubR1, and Dynactin subunit p150glued are reduced and the components of the inner centromeric region (Aurora B kinase and Survivin) show compromised recruitment to centromeres. On the contrary, kinetochores on chromosomes assembled according to the second protocol closely resemble those in somatic cells. Our results indicate that the transition of sperm nuclei through interphase is an essential step for proper kinetochore assembly. 相似文献
10.
The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the duplication of genome in eukaryotes. Here, we describe a single-molecule assay that allows replication of DNA attached to the functionalized surface of a microfluidic flow cell in a soluble Xenopus leavis egg extract replication system and subsequent visualization of replication products via fluorescence microscopy. We also explain a method for detection of replication proteins, through fluorescently labeled antibodies, on partially replicated DNA immobilized at both ends to the surface. 相似文献
11.
Xenopus egg extracts provide a powerful tool for studying formation and function of chromosomes. Two alternative protocols are generally used to obtain mitotic chromosomes. The first one employs direct assembly of chromatin from sperm nuclei in CSF-arrested meiotic extracts, while the second is based on transition of sperm DNA through a replication step, followed by re-establishing of CSF arrest. In this study we show that general kinetochore structure is disrupted in chromosomes assembled directly in CSF egg extracts: the amounts of outer kinetochore proteins such as Bub1, BubR1 and Dynactin subunit p150glued are reduced and the components of the inner centromeric region (Aurora B kinase and Survivin) show compromised recruitment to centromeres. In contrast, kinetochores on chromosomes assembled according to the second protocol closely resemble those in somatic cells. Our results argue that transition of sperm nuclei through interphase is an essential step for proper kinetochore assembly. 相似文献
12.
The nuclear membrane prevents replication of human G2 nuclei but not G1 nuclei in Xenopus egg extract. 总被引:7,自引:0,他引:7
We have used synchronized HeLa cells to investigate the role of the nuclear membrane in preventing rereplication in a single cell cycle. Nuclei were prepared with intact nuclear membranes using streptolysin-O or digitonin and assayed for replication in Xenopus egg extracts. Intact G1 nuclei replicate semiconservatively, but intact G2 nuclei do not replicate in egg extract. However, permeabilizing the nuclear membranes of G2 nuclei by treatment with NP-40 allows them all to replicate in egg extract under cell cycle control, suggesting that integrity of the nuclear membrane is required to distinguish G2 from G1 human nuclei and to prevent rereplication within a single cell cycle. The results are discussed in terms of the previously proposed licensing factor model. 相似文献
13.
Site-specific initiation of DNA replication within the non-transcribed spacer of Physarum rDNA. 总被引:4,自引:1,他引:3 下载免费PDF全文
Physarum polycephalum rRNA genes are found on extrachromosomal 60 kb linear palindromic DNA molecules. Previous work using electron microscope visualization suggested that these molecules are duplicated from one of four potential replication origins located in the 24 kb central non-transcribed spacer [Vogt and Braun (1977) Eur. J. Biochem., 80, 557-566]. Considering the controversy on the nature of the replication origins in eukaryotic cells, where both site-specific or delocalized initiations have been described, we study here Physarum rDNA replication by two dimensional agarose gel electrophoresis and compare the results to those obtained by electron microscopy. Without the need of cell treatment or enrichment in replication intermediates, we detect hybridization signals corresponding to replicating rDNA fragments throughout the cell cycle, confirming that the synthesis of rDNA molecules is not under the control of S-phase. The patterns of replication intermediates along rDNA minichromosomes are consistent with the existence of four site-specific replication origins, whose localization in the central non-transcribed spacer is in agreement with the electron microscope mapping. It is also shown that, on a few molecules, at least two origins are active simultaneously. 相似文献
14.
DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts. 总被引:11,自引:2,他引:9 下载免费PDF全文
Cell-free extracts of Xenopus eggs will replicate plasmid DNA molecules under normal cell cycle control. We have used the neutral/neutral 2-D gel technique to map the sites at which DNA replication initiates in this system. Three different plasmids were studied: one containing the Xenopus rDNA repeat, one containing single copy Xenopus genomic DNA, and another containing the yeast 2 microns replication origin. 2-D gel profiles show that many potential sites of initiation are present on each plasmid, and are randomly situated at the level of resolution of this technique (500-1000 bp). Despite the abundance of sites capable of supporting the initiation of replication, pulse-chase experiments suggest that only a single randomly situated initiation event occurs on each DNA molecule. Once initiation has taken place, conventional replication forks appear to move away from this site at a rate of about 10nt/second, similar to the rate observed in vivo. 相似文献
15.
Microtubule-dependent assembly of the nuclear envelope in Xenopus laevis egg extract 总被引:1,自引:0,他引:1
Microtubules take part in several mechanisms of intracellular motility, including organelle transport and mitosis. We have studied the ability of Xenopus egg extract to support nuclear membrane and pore complex formation when microtubule dynamics are manipulated. In this report we show that the formation of a nuclear envelope surrounding sperm chromatin requires polymerized microtubules. We have observed that microtubule-depolymerizing reagents, and AS-2, a known inhibitor of the microtubule motor protein kinesin, do not inhibit the formation of a double nuclear membrane. However these double membranes contain no morphologically identifiable nuclear pore complexes and do not support the accumulation of karyophilic proteins. In contrast, the assembly of annulate lamellae, cytoplasmic structures containing a subset of pore complex proteins, was not affected. Our data show that not only polymerized microtubules, but also the microtubule motor protein kinesin, are involved in the formation of the nuclear envelope. These results support the conclusion that multiple nuclear envelope-forming mitotic vesicle populations exist, that microtubules play an essential and selective role in the transport of nuclear envelope-forming vesicle population(s), and that separate mechanisms are involved in nuclear envelope and annulate lamellae formation. 相似文献
16.
Xenopus egg extracts initiate replication at specific origin sites within mammalian G1‐phase nuclei. Similarly, S‐phase extracts from Saccharomyces cerevisiae initiate DNA replication within yeast nuclei at specific yeast origin sequences. Here we show that Xenopus egg extracts can initiate DNA replication within G1‐phase yeast nuclei but do not recognize yeast origin sequences. When G1‐phase yeast nuclei were introduced into Xenopus egg extract, semiconservative, aphidicolin‐sensitive DNA synthesis was induced after a brief lag period and was restricted to a single round of replication. The specificity of initiation within the yeast 2 μm plasmid as well as in the vicinity of the chromosomal origin ARS1 was evaluated by neutral two‐dimensional gel electrophoresis of replication intermediates. At both locations, replication was found to initiate outside of the ARS element. Manipulation of both cis‐ and trans‐acting elements in the yeast genome before introduction of nuclei into Xenopus egg extract may provide a system with which to elucidate the requirements for vertebrate origin recognition. J. Cell. Biochem. 80:73–84, 2000. © 2000 Wiley‐Liss, Inc. 相似文献
17.
Reactivation of chicken erythrocyte nuclei for DNA replication in Xenopus egg extracts involves two phases of chromatin remodelling: a fast decondensation leading to a small volume increase and chromatin dispersion occurring within a few minutes (termed stage I decondensation), followed by a slower membrane-dependent decondensation and enlargement of up to 40-fold from the initial volume (stage II decondensation). Chromatin decondensation as measured by nuclear swelling and micrococcal nuclease digestion required ATP. We observed a characteristic change in the phosphorylation pattern of erythrocyte proteins upon incubation in egg extract. While histones H5, H2A, and H4 became selectively phosphorylated during decondensation, the phosphorylation of histone H3 and of several nonhistone proteins was prevented. Furthermore, histone H5 was selectively released from erythrocyte nuclei in an energy-dependent reaction. These molecular changes already occurred during stage I decondensation and they persisted during stage II decondensation. DNA replication was confined to nuclei of stage II decondensation which incorporated lamin LIII from the egg extract. These results show that initiation of DNA replication in chicken erythrocytes requires in addition to ATP-dependent chromatin remodelling (stage I), further changes in chromatin structure that correlates with lamin LIII incorporation, and stage II decondensation. 相似文献
18.
Site-specific and temporally controlled initiation of DNA replication in a human cell-free system 总被引:4,自引:1,他引:4 下载免费PDF全文
We have recently established a cell-free system from human cells that initiates semi-conservative DNA replication in nuclei isolated from cells which are synchronised in late G1 phase of the cell division cycle. We now investigate origin specificity of initiation using this system. New DNA replication foci are established upon incubation of late G1 phase nuclei in a cytosolic extract from proliferating human cells. The intranuclear sites of replication foci initiated in vitro coincide with the sites of earliest replicating DNA sequences, where DNA replication had been initiated in these nuclei in vivo upon entry into S phase of the previous cell cycle. In contrast, intranuclear sites that replicate later in S phase in vivo do not initiate in vitro. DNA replication initiates in this cell-free system site-specifically at the lamin B2 DNA replication origin, which is also activated in vivo upon release of mimosine-arrested late G1 phase cells into early S phase. In contrast, in the later replicating ribosomal DNA locus (rDNA) we neither detected replicating rDNA in the human in vitro initiation system nor upon entry of intact mimosine-arrested cells into S phase in vivo. As a control, replicating rDNA was detected in vivo after progression into mid S phase. These data indicate that early origin activity is faithfully recapitulated in the in vitro system and that late origins are not activated under these conditions, suggesting that early and late origins may be subject to different mechanisms of control. 相似文献
19.
We investigated the dynamics of DNA binding of replication initiation proteins during formation of the pre-replicative complex (pre-RC) on plasmids in Xenopus egg extracts. The pre-RC was efficiently formed on plasmids at 23 degrees C, with one or a few origin recognition complex (ORC) molecules and approximately 10-20 mini-chromosome maintenance 2 (MCM2) molecules loaded onto each plasmid. Although geminin inhibited MCM loading, MCM interacted weakly but stoichiometrically with the plasmid in an ORC-dependent manner, even in the presence of geminin (with approximately 10 MCM2 molecules per plasmid). Interestingly, DNA binding of ORC, CDC6, and CDT1 was significantly stabilized in the presence of geminin, under which conditions approximately 10-20 molecules each of ORC and CDC6 were bound. Moreover, a similarly stable ORC-CDC6-CDT1 complex rapidly formed on DNA at lower temperature (0 degrees C) without geminin, with approximately 10-20 molecules each of ORC and CDC6 bound to the plasmid, but almost no binding of MCM. However, upon shifting the temperature to 23 degrees C, most ORC, CDC6, and CDT1 molecules were displaced from the DNA, leaving about one ORC molecule on the plasmid, whereas approximately 10 MCM2 molecules were loaded onto each plasmid. Furthermore, it was possible to load MCM onto DNA when the isolated ORC-CDC6-CDT1-DNA complex was mixed with purified MCM proteins. These results suggest that an ORC-CDC6-CDT1 complex pre-formed on DNA is directly involved in MCM loading and imply that each DNA-bound ORC molecule loads only one or a few MCM2-7 complexes during metazoan pre-RC formation. 相似文献
20.
Replication of Xenopus erythrocyte nuclei in a homologous egg extract requires prior proteolytic treatment 总被引:2,自引:0,他引:2
Reactivation and reinitiation of DNA replication in quiescent frog erythrocyte nuclei has been analyzed following incubation in extracts prepared from activated Xenopus eggs. Nuclear decondensation and DNA synthesis only occurred if nuclei were pretreated with low doses of trypsin. This protease treatment did not digest histones, but did degrade several nonhistone proteins. Activated erythrocyte nuclei swell and begin DNA synthesis by 30 min after being mixed with the egg extract. In some extracts virtually complete genome replication was achieved in all nuclei after 2-3 hr. Addition of several protease inhibitors during sperm nuclear isolation significantly reduced the template efficiency of these preparations. We concluded that proteolytic alteration of nonhistone nuclear structural proteins may be a general mechanism which permits quiescent nuclei to reenter the replication cycle. Erythrocyte nuclei and egg extracts provide an excellent experimental system in which to investigate the processes of nuclear reactivation. 相似文献