首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In order to examine the effects of alpha3 nicotinic acetylcholine receptor (nAChR) in connection with the pathogenesis of Alzheimer's disease (AD), neuroblastoma (SH-SY5Y) cells were transfected with small interference RNAs (siRNAs) that target specifically towards alpha3 nAChR. The expressions of alpha3 nAChR mRNA and protein were measured by real-time PCR and Western blotting, respectively. The levels of the alpha-form of secreted amyloid precursor protein (alphaAPPs) and total-APP were determined by Western blotting. SH-SY5Y cells transfected with siRNA were then treated with 1muM beta-amyloid peptide (Abeta)(1-42), following which the levels of lipid peroxidation, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the reduction rate of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] were characterized by utilizing spectrophotometric procedures. As compared to controls, SH-SY5Y cells transfected with siRNA expressed the decreases in the levels of alpha3 nAChR mRNA and protein by 98% and 66% lower levels, respectively; exhibited reduced level of the alphaAPPs; and demonstrated enhanced lipid peroxidation, decreased rate of MTT reduction, and declined activities of SOD and GSH-Px. Inhibited gene expression of the alpha3 nAChR enhanced the toxicity exerted by Abeta. These results indicate that alpha3 nAChR may improve cleavage of APP by alpha-secretase, enhance antioxidation and inhibit the toxicity of Abeta, suggesting that the receptor might play an important role in AD.  相似文献   

4.
Accumulation of senile plaques composed of amyloid beta-peptide (Abeta) is a pathological hallmark of Alzheimer disease (AD), and Abeta is generated through the sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretase. Although oxidative stress has been implicated in the AD pathogenesis by inducing Abeta production, the underlying mechanism remains elusive. Here we show that the pro-oxidant H(2)O(2) promotes Abeta production through c-Jun N-terminal kinase (JNK)-dependent activation of gamma-secretase. Treatment with H(2)O(2) induced significant increase in the levels of intracellular and secreted Abeta in human neuroblastoma SH-SY5Y cells. Although gamma-secretase-mediated cleavage of APP or C99 was enhanced upon H(2)O(2) treatment, expression of APP or its alpha/beta-secretase-mediated cleavage was not affected. Silencing of the stress-activated JNK by small interfering RNA or the specific JNK inhibitor SP600125 reduced H(2)O(2)-induced gamma-secretase-mediated cleavage of APP. JNK activity was augmented in human brain tissues from AD patients and active JNK located surrounding the senile plaques in the brain of AD model mouse. Our data suggest that oxidative stress-activated JNK may contribute to senile plaque expansion through the promotion of gamma-secretase-mediated APP cleavage and Abeta production.  相似文献   

5.
We reported that iron influx drives the translational expression of the neuronal amyloid precursor protein (APP), which has a role in iron efflux. This is via a classic release of repressor interaction of APP mRNA with iron-regulatory protein-1 (IRP1) whereas IRP2 controls the mRNAs encoding the L- and H-subunits of the iron storage protein, ferritin. Here, we identified thirteen potent APP translation blockers that acted selectively towards the uniquely configured iron-responsive element (IRE) RNA stem loop in the 5′ untranslated region (UTR) of APP mRNA. These agents were 10-fold less inhibitory of 5′UTR sequences of the related prion protein (PrP) mRNA. Western blotting confirmed that the ‘ninth’ small molecule in the series selectively reduced neural APP production in SH-SY5Y cells at picomolar concentrations without affecting viability or the expression of α-synuclein and ferritin. APP blocker-9 (JTR-009), a benzimidazole, reduced the production of toxic Aβ in SH-SY5Y neuronal cells to a greater extent than other well tolerated APP 5′UTR-directed translation blockers, including posiphen, that were shown to limit amyloid burden in mouse models of Alzheimer''s disease (AD). RNA binding assays demonstrated that JTR-009 operated by preventing IRP1 from binding to the IRE in APP mRNA, while maintaining IRP1 interaction with the H-ferritin IRE RNA stem loop. Thus, JTR-009 constitutively repressed translation driven by APP 5′UTR sequences. Calcein staining showed that JTR-009 did not indirectly change iron uptake in neuronal cells suggesting a direct interaction with the APP 5′UTR. These studies provide key data to develop small molecules that selectively reduce neural APP and Aβ production at 10-fold lower concentrations than related previously characterized translation blockers. Our data evidenced a novel therapeutic strategy of potential impact for people with trisomy of the APP gene on chromosome 21, which is a phenotype long associated with Down syndrome (DS) that can also cause familial Alzheimer''s disease.  相似文献   

6.
In order to examine the neuroprotective effects of the alpha7 nicotinic receptor (nAChR) in relationship to the pathogenesis of Alzheimer's disease (AD), neuroblastoma (SH-SY5Y) cells were transfected with small interference RNAs (siRNAs) that targets specifically towards alpha7 nAChR or exposed to 20microM 3-[2,4-dimethoxybenzylidene] anabaseine (DMXB), a selective agonist of this same receptor. The levels of alpha7 nAChR mRNA and protein were measured by RT-PCR and Western blotting, respectively. The levels of the alpha-form of secreted amyloid precursor protein (alphaAPPs), total APP and the extracellular signal-regulated kinase 1/2 (ERK1/2) were also determined by Western blotting. SH-SY5Y cells transfected with siRNA or exposed to DMXB were then treated with 1microM Abeta(25-35), following which the levels of lipid peroxidation and rate of reduction of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] were characterized by utilizing spectrophotometric procedures. Compared to controls, SH-SY5Y cells transfected with siRNA expressed the decreases in the levels of alpha7 nAChR mRNA and protein by 81% and 69% lower levels, respectively; exhibited reduced levels of the alphaAPPs and ERK1/2 proteins; and demonstrated enhanced lipid peroxidation and a decreased rate of MTT reduction. In cells exposed to DMXB, the level of alpha7 nAChR protein was elevated by 23%, with no alteration in the content of the corresponding mRNA; the levels of the alphaAPPs and ERK1/2 proteins were increased. Inhibition of the expression of the alpha7 nAChR gene enhanced the toxicity exerted by Abeta, whereas stimulation of this receptor attenuated this toxicity exerted. These findings indicate that alpha7 nAChR may play a significant neuroprotective role by enhancing cleavage of APP by alpha-secretase, regulating signal transduction, improving antioxidant defenses and inhibiting the toxicity of Abeta, which is connected with the pathogenesis of AD.  相似文献   

7.
Liu F  Su Y  Li B  Zhou Y  Ryder J  Gonzalez-DeWhitt P  May PC  Ni B 《FEBS letters》2003,547(1-3):193-196
The phosphorylation status of amyloid precursor protein (APP) at Thr668 is suggested to play a critical role in the proteolytic cleavage of APP, which generates either soluble APP(beta) (sAPP(beta)) and beta-amyloid peptide (Abeta), the major component of senile plaques in patient brains inflicted with Alzheimer's disease (AD), or soluble APP(alpha) (sAPP(alpha)) and a peptide smaller than Abeta. One of the protein kinases known to phosphorylate APP(Thr668) is cyclin-dependent kinase 5 (Cdk5). Cdk5 is activated by the association with its regulatory partner p35 or its truncated form, p25, which is elevated in AD brains. The comparative effects of p35 and p25 on APP(Thr668) phosphorylation and APP processing, however, have not been reported. In this study, we investigated APP(Thr668) phosphorylation and APP processing mediated by p35/Cdk5 and p25/Cdk5 in the human neuroblastoma cell line SH-SY5Y. Transient overexpression of p35 and p25 elicited distinct patterns of APP(Thr668) phosphorylation, specifically, p35 increasing the phosphorylation of both mature and immature APP, whereas p25 primarily elevated the phosphorylation of immature APP. Despite these differential effects on APP phosphorylation, both p35 and p25 overexpression enhanced the secretion of Abeta, sAPP(beta), as well as sAPP(alpha). These results confirm the involvement of Cdk5 in APP processing, and suggest that p35- and p25-mediated Cdk5 activities lead to discrete APP phosphorylation.  相似文献   

8.
9.
The amyloid precursor protein (APP) has been associated with Alzheimer's disease (AD) because APP is processed into the beta-peptide that accumulates in amyloid plaques, and APP gene mutations can cause early onset AD. Inflammation is also associated with AD as exemplified by increased expression of interleukin-1 (IL-1) in microglia in affected areas of the AD brain. Here we demonstrate that IL-1alpha and IL-1beta increase APP synthesis by up to 6-fold in primary human astrocytes and by 15-fold in human astrocytoma cells without changing the steady-state levels of APP mRNA. A 90-nucleotide sequence in the APP gene 5'-untranslated region (5'-UTR) conferred translational regulation by IL-1alpha and IL-1beta to a chloramphenicol acetyltransferase (CAT) reporter gene. Steady-state levels of transfected APP(5'-UTR)/CAT mRNAs were unchanged, whereas both base-line and IL-1-dependent CAT protein synthesis were increased. This APP mRNA translational enhancer maps from +55 to +144 nucleotides from the 5'-cap site and is homologous to related translational control elements in the 5'-UTR of the light and and heavy ferritin genes. Enhanced translation of APP mRNA provides a mechanism by which IL-1 influences the pathogenesis of AD.  相似文献   

10.
gamma-Secretase is a key enzyme involved in the processing of the beta-amyloid precursor protein into amyloid beta-peptides (Abeta). Abeta accumulates and forms plaques in Alzheimer's disease (AD) brains. A progressive neurodegeneration and cognitive decline occurs during the course of the disease, and Abeta is believed to be central for the molecular pathogenesis of AD. Apoptosis has been implicated as one of the mechanisms behind the neuronal cell loss seen in AD. We have studied preservation and activity of the gamma-secretase complex during apoptosis in neuroblastoma cells (SH-SY5Y) exposed to staurosporine (STS). We report that the known components (presenilin, Nicastrin, Aph-1 and Pen-2) interact and form active gamma-secretase complexes in apoptotic cells. In addition, the fragments corresponding to the PS1 N-terminal fragment and the caspase-cleaved PS1 C-terminal fragment (PS1-caspCTF) were found to form active gamma-secretase complexes when co-expressed in presenilin (PS) knockout cells. Interestingly, PS1-caspCTF replaced the normal PS1 C-terminal fragment and was co-immunoprecipitated with the gamma-secretase complex in SH-SY5Y cells exposed to STS. In addition, Abeta was detected in medium from apoptotic HEK APP(swe) cells. Together, the data show that gamma-secretase complexes containing PS1-caspCTF are active, and suggest that this proteolytic activity is also important in dying cells and may affect the progression of AD.  相似文献   

11.
12.
13.
14.
15.
Amyloid-beta peptides (Abeta), generated by proteolysis of the beta-amyloid precursor protein (APP) by beta- and gamma-secretases, play an important role in the pathogenesis of Alzheimer disease (AD). Inflammation is also believed to be integral to the pathogenesis of AD. Here we show that prostaglandin E(2) (PGE(2)), a strong inducer of inflammation, stimulates the production of Abeta in cultured human embryonic kidney (HEK) 293 or human neuroblastoma (SH-SY5Y) cells, both of which express a mutant type of APP. We have demonstrated using subtype-specific agonists that, of the four main subtypes of PGE(2) receptors (EP(1-4)), EP(4) receptors alone or EP(2) and EP(4) receptors together are responsible for this PGE(2)-stimulated production of Abeta in HEK293 or SH-SY5Y cells, respectively. An EP(4) receptor antagonist suppressed the PGE(2)-stimulated production of Abeta in HEK293 cells. This stimulation was accompanied by an increase in cellular cAMP levels, and an analogue of cAMP stimulated the production of Abeta, demonstrating that increases in the cellular level of cAMP are responsible for the PGE(2)-stimulated production of Abeta. Immunoblotting experiments and direct measurement of gamma-secretase activity suggested that PGE(2)-stimulated production of Abeta is mediated by activation ofgamma-secretase but not of beta-secretase. Transgenic mice expressing the mutant type of APP showed lower levels of Abeta in the brain, when they were crossed with mice lacking either EP(2) or EP(4) receptors, suggesting that PGE(2)-mediated activation of EP(2) and EP(4) receptors is involved in the production of Abeta in vivo and in the pathogenesis of AD.  相似文献   

16.
The amyloid beta-protein (Abeta) deposited in brains of Alzheimer's disease (AD) patients is proteolytically derived from a large Abeta precursor protein (APP). APP gene expression patterns in the AD brain region indicate that abnormalities of gene regulation may be important in AD pathology. To understand the contribution of different cell types to APP gene expression, we studied it at four levels: promoter activity (by reporter gene assay of transfected cells), DNA-nuclear protein interaction (by electrophoretic mobility shift assay), RNA message and protein (by northern and western blotting, respectively). APP mRNA and protein expression levels were greater in neuroblastoma and PC12 cells than in glial or cervix epithelial cells. Relative activity among 12 different promoter regions and within single regions varied according to cell type/cell line. An upstream regulatory region containing a GATA-1 site is necessary for activity in PC12 and glial cells but not in neuroblastoma cells. DNA-protein interactions were examined in three distal and one proximal promoter elements in nuclear extracts belonging to neuronal and non-neuronal cells. The proximal promoter region is important for cell line-specific APP gene expression. Characterization of the APP regulatory region's interaction with cell type-specific nuclear factor(s) is important to understand tissue-specific expression of APP seen in AD subjects.  相似文献   

17.
The alternative polyadenylation of the mRNA encoding the amyloid precursor protein (APP) involved in Alzheimer's disease generates two molecules, with the first of these containing 258 additional nucleotides in the 3' untranslated region (3'UTR). We have previously shown that these 258 nucleotides increase the translation of APP mRNA injected in Xenopus oocytes (5). Here, we demonstrate that this mechanism occurs in CHO cells as well. We also present evidence that the 3'UTR containing 8 nucleotides more than the short 3'UTR allows the recovery of an efficiency of translation similar to that of the long 3'UTR. Moreover, the two guanine residues located at the 3' ends of these 8 nucleotides play a key role in the translational control. Using gel retardation mobility shift assay, we show that proteins from Xenopus oocytes, CHO cells, and human brain specifically bind to the short 3'UTR but not to the long one. The two guanine residues involved in the translational control inhibit this specific binding by 65%. These results indicate that there is a correlation between the binding of proteins to the 3'UTR of APP mRNA and the efficiency of mRNA translation, and that a GG motif controls both binding of proteins and translation.  相似文献   

18.
The mammalian amyloid precursor protein (APP) protein family consists of the APP and the amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2). The neurotoxic amyloid beta-peptide (Abeta) originates from APP, which is the only member of this protein family implicated in Alzheimer disease. However, the three homologous proteins have been proposed to be processed in similar ways and to have essential and overlapping functions. Therefore, it is also important to take into account the effects on the processing and function of the APP-like proteins in the development of therapeutic drugs aimed at decreasing the production of Abeta. Insulin and insulin-like growth factor-1 (IGF-1) have been shown to regulate APP processing and the levels of Abeta in the brain. In the present study, we show that IGF-1 increases alpha-secretase processing of endogenous APP and also increases ectodomain shedding of APLP1 and APLP2 in human SH-SY5Y neuroblastoma cells. We also investigated the role of different IGF-1-induced signaling pathways, using specific inhibitors for phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK). Our results indicate that phosphatidylinositol 3-kinase is involved in ectodomain shedding of APP and APLP1, but not APLP2, and that MAPK is involved only in the ectodomain shedding of APLP1.  相似文献   

19.
20.
Several lines of evidence suggest that enhanced oxidative stress is involved in the pathogenesis and/or progression of Alzheimer's disease (AD). Amyloid beta-protein (Abeta) that composes senile plaques, a major neuropathological hallmark of AD, is considered to have a causal role in AD. Thus, we have studied the effect of oxidative stress on Abeta metabolism within the cell. Here, we report that oxidative stress induced by H(2)O(2) (100-250 microM) caused an increase in the levels of intracellular Abeta in human neuroblastoma SH-SY5Y cells. Treatment with 200 microM H(2)O(2) caused significant decreases in the protein levels of full-length beta-amyloid precursor protein (APP) and its COOH-terminal fragment that is generated by beta-cleavage, while the gene expression of APP was not altered under these conditions. A pulse-chase experiment further showed a decrease in the half-life of this amyloidogenic COOH-terminal fragment but not in that of nonamyloidogenic counterpart in the H(2)O(2)-treated cells. These results suggest that oxidative stress promotes intracellular accumulation of Abeta through enhancing the amyloidogenic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号