首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assembly of newly replicated chromatin.   总被引:53,自引:0,他引:53  
A Worcel  S Han  M L Wong 《Cell》1978,15(3):969-977
Mild staphylococcal nuclease digestions under isotonic conditions release fragments of a 200 Å diameter fiber from nuclei of Drosophila melanogaster tissue culture cells. These soluble fragments have high sedimentation coefficients (30–100S) and show tightly packed nucleosomes in the electron microscope. Under the same conditions, newly replicated chromatin is released as more slowly sedimenting fragments (14S). Within 20 min after DNA replication, the nascent chromatin gradually matures into compact supranucleosomal structures which are indistinguishable from bulk chromatin on the isokinetic sucrose gradients.We have used this fractionation technique to examine the question of the fate and assembly of the new histones. After short pulses with either 35S-methionine or 3H-lysine, the radioactive histones do not co-sediment with the bulk chromatin but appear instead in the fractions where the newly replicated DNA is found. Furthermore, the various nascent histones appear in different fractions on the gradient: histones H3 and H4 in 10–15S structures, histones H2A and H2B in 15–50S structures and histone H1 in 30–100S structures. These results, together with the analysis of pulse and pulse-chase experiments of both nascent DNA and histones, strongly suggest that histones H3 and H4 are deposited first on the nascent DNA (during or slightly after the DNA is replicated), histones H2A and H2B are deposited next (2–10 min later) and histone H1 is deposited last (10–20 min after DNA replication). A high turnover 20,000 dalton protein is also associated with the newly replicated chromatin.  相似文献   

2.
Three types of density gradients - neutral metrizamide, alkaline NaOH-metrizamide and alkaline triethanolamine-metrizamide - were used for studying the distribution of histones between the two DNA strands in alkali-denatured chromatin. It was found possible to avoid both protein redistribution and dissociation by using triethanolamine-metrizamide density gradients at pH 10.5. Under these conditions an alkali-denatured mixture of DNA and chromatin was well separated into the original DNA and DNP. When native or sonicated chromatin was denatured at pH 12.2 and centrifuged in a triethanolamine-metrizamide density gradient at pH 10.5 no peak of free DNA appeared. These results show that both DNA strands remain associated with histone molecules upon alkaline denaturation of chromatin.  相似文献   

3.
4.
During imbibition and germination of jack pine seeds, the composition of the total extractable chromatin varied. Relative to DNA, the histone levels decreased as the nonhistone chromosomal proteins (NHCP) increased. New chromosomal proteins were synthesized after 2 days of imbibition as judged by recovery of 14C-amino acids from the major protein fractions. Phosphorylation of histones from 32P-phosphoric acid was detected before the incorporation of 14C-amino acids. In the seed the synthesis and relative changes of chromatin coincided with a fall in total soluble protein and free arginine N. By contrast, adenylate energy charge, free glutamine N and in vitro template activity of chromatin increased during chromatin protein synthesis. When seeds had germinated for 4 days after the start of imbibition more radioactivity, derived from free 14C-amino acids, was recovered from the NHCP than from the histones. The percentage amino acid composition of most histone fractions remained stable, whereas the composition of NHCP changed more with time. The phosphorylation of NHCP was 8- to 41-fold greater than that of the histones. Phosphorylation of histone H4 was not detected at any stage of germination. Correlations between recovery of radioactivity (32P and 14C) from chromosomal proteins and higher adenylate energy charge were positive.  相似文献   

5.
K Marushige  Y Marushige  T K Wong 《Biochemistry》1976,15(10):2047-2053
Displacement of histones from calf thymus chromatin has been studied in an attempt to postulate the mechanisms involved in the total removal of somatic-type histones during transformation of spermatid chromatin. When chromatin is saturated with protamine (protamine/DNA, 0.5), histone I becomes displaceable at 0.15-0.3 M NaCl, suggesting that direct replacement by highly basic sperm histone could be a mechanism for its removal. While histone I is the only histone which is extensively degraded upon incubation of chromatin and, therefore, proteolysis might provide an additional mechanism for the removal of this histone, acetylation of chromatin by acetic anhydride greatly increases suscpetibility of histones IIb1, IIb2, and III to the chromosomally associated protease. These histones are extensively degraded and displaced from the DNA upon incubation of the acetylated chromatin. Although histone IV is not appreciably degraded, the proteolytic removal of acetylated histone III from chromatin weakens the interaction of acetylated histone IV to the DNA, and this histone becomes dissociable at 0.3 M NaCl. A comparison of the extent of chemical acetylation of individual histones observed in this investigation with that of enzymatic acetylation which can be achieved in vivo suggests that acetylation and proteolysis could be a mechanism for the removal of histone IIb2 and III. The displacement of histones IIb1 and IV could be explained on the basis of decreased binding to DNA as a result of their acetylation together with the proteolytic removal of their respective partner histones, IIb2 and III.  相似文献   

6.
HeLa chromatin core particles contain a protein kinase which transfers phosphate from ATP to both nonhistone proteins and histones. The enzyme preferentially modifies H3 among the histones; about 7% of the H3 molecules in the nucleoprotein are modified at saturation. Activity of this kinase likely contributed to earlier results using crosslinking methodology to study which histones interact with the ends of core particle DNA. When the kinase is largely removed by sedimentation of core particles through sucrose gradients containing 0.45 M NaCl, crosslinking of the 5'-terminal label on DNA is observed only to histone H3. The overall efficiency of the crosslinking reaction is about 15%. The origin of the 5'-terminal 32P previously assigned as crosslinked to H4 is not explained by the current experiments.  相似文献   

7.
Formation of hybrid nucleosomes cantaining new and old histones.   总被引:3,自引:2,他引:1       下载免费PDF全文
5 mM hydroxyurea (HU) inhibits DNA synthesis in mouse P815 cells by 94-97% in less than 1 hr. Nevertheless, histone synthesis continues and newly-synthesised histones are incorporated into non-replicating chromatin at a rate of about 20% of that in control exponentially-growing cells. To study the organization of these histones in chromatin P815 cells were treated with 5 mM HU in medium containing dense (15N, 13C, 2H) - substituted amino acids. After inhibition of DNA synthesis, newly-synthesised histones were labelled with (3H)-arginine. The cells were harvested 90 min later, and mono- and oligonucleosomes were prepared and analysed on metrizamide-triethanolamine (MA-TEA density gradients. Analysis of the distribution of 3H-labelled histones in these gradients shows that they are incorporated into hybrid mononucleosomes containing both new and old histones. It is also shown that these hybrid nucleosomes are not randomly distributed, but show a certain tendency to be clustered in certain chromatin regions.  相似文献   

8.
It has been known for several years that DNA replication and histone synthesis occur concomitantly in cultured mammalian cells. Normally all five classes of histones are synthesized coordinately. However, mouse myeloma cells, synchronized by starvation for isoleucine, synthesize increased amounts of histone H1 relative to the four nucleosomal core histones. This unscheduled synthesis of histone H1 is reduced within 1 h after refeeding isoleucine, and is not a normal component of G1. The synthesis of H1 increases coordinately again with other histones during the S phase. The DNA synthesis inhibitors, cytosine arabinoside and hydroxyurea, block all histone synthesis in S-phase cells. The levels of histone H1 mRNA, relative to the other histone mRNAs, is increased in isoeleucine-starved cells and decreases rapidly after refeeding isoleucine. The increased incorporation of histone H1 is at least partially due to the low isoleucine content of histone H1. Starvation of cells for lysine resulted in a decrease in H1 synthesis relative to core histones. Again the ratio was altered on refeeding the amino acid. 3T3 cells starved for serum also incorporated only H1 histones into chromatin. The ratio of different H1 proteins also changed. The synthesis of the H10 protein was predominant in G0 cells, and reduced in S-phase cells. These data indicate the metabolism of H1 is independent of the other histones when cell growth is arrested.  相似文献   

9.
Uterine tissue isolated from immature rats at different times after estradiol injection was incubated with medium containing [3H]lysine. The acid-extractable protein from the uterine tissue was subjected to electrophoresis on sodium dodecyl sulfate and acid-urea-Triton X-100 polyacrylamide gels, and the rate of chromatin protein synthesis determined by densitometric analysis of the fluorographs of the gels. Synthesis of chromatin proteins (histones and high mobility group chromatin proteins) was stimulated by 3 h after estrogen treatment and reached a peak at 9 h, several hours before DNA synthesis was stimulated. Synthesis of chromatin proteins occurred at the same time as total cellular protein synthesis. Estrogen stimulated the synthesis of histone variants at different rates, but the accumulation of histone proteins remained coordinated such that equivalent amounts of histone proteins were being produced at any one time.  相似文献   

10.
Every cell has to duplicate its entire genome during S-phase of the cell cycle. After replication, the newly synthesized DNA is rapidly assembled into chromatin. The newly assembled chromatin ‘matures’ and adopts a variety of different conformations. This differential packaging of DNA plays an important role for the maintenance of gene expression patterns and has to be reliably copied in each cell division. Posttranslational histone modifications are prime candidates for the regulation of the chromatin structure. In order to understand the maintenance of chromatin structures, it is crucial to understand the replication of histone modification patterns. To study the kinetics of histone modifications in vivo, we have pulse-labeled synchronized cells with an isotopically labeled arginine (15N4) that is 4 Da heavier than the naturally occurring 14N4 isoform. As most of the histone synthesis is coupled with replication, the cells were arrested at the G1/S boundary, released into S-phase and simultaneously incubated in the medium containing heavy arginine, thus labeling all newly synthesized proteins. This method allows a comparison of modification patterns on parental versus newly deposited histones. Experiments using various pulse/chase times show that particular modifications have considerably different kinetics until they have acquired a modification pattern indistinguishable from the parental histones.  相似文献   

11.
Metabolically labeled non-histone chromosomal proteins of high specific activity were fractionated on the basis of their sequential extractability from Krebs II chromatin with urea/salt solutions according to Bekhor et al. (1974a). The binding of each of these NHCP2 classes to protein-free DNA and histone-DNA complexes (nucleohistone) was measured and compared to the binding to DNA substituted with 5-bromo-2′-deoxyuridine. After reconstitution of the interacting components, the binding of NHCP and histones was measured according to Scatchard formalism by titration of fixed amounts of DNA with increasing inputs of protein ligands under stringent conditions of 0.25 ionic strength, pH 8.0. Histone binding to either native DNA or BrUrd-substituted DNA was found to be essentially the same. In the presence of histones, the binding for all NHCP classes, except for medium 3 NHCP, was enhanced by an order of magnitude over the binding values for NHCP to DNA in the absence of histones. The binding of NHCP to DNA was thus strongly influenced by histones bound to DNA. A general and significant decrease in histone content in the complexes relative to increased NHCP binding was also apparent, with medium 3 NHCP having the greatest activity to weaken histone interaction with DNA and medium 0 the least. Enhancement in NHCP binding to BrUd-substituted DNA in the presence of histones was decreased to about 50% of the binding to control DNA. The distribution and quantity of DNA binding and non-DNA binding NHCP was also estimated by photochemical attachment to 33% BrUrd-substituted DNA in tryptophan-labeled chromatin and by direct binding assays. We have obtained 30% crosslinking for either histones or NHCP to DNA in stringently formed complexes. In histone-NHCP-DNA complexes, histone crosslinking remained unchanged, while that of NHCP increased to 70%. This is further evidence for a modification in the binding of NHCP to DNA in the presence of histones. The percentage of NHCP crosslinked to DNA in native chromatin ranged from 24% for medium 0 NHCP to 50% for medium 1 and 3 NHCP with an average of 35% for total NHCP. These results plus the direct binding assays indicate that NHCP, in addition to high affinity DNA binding, also interacts non-specifically to DNA and to proteins in chromatin. A mechanism is also being proposed to account for the observed BrUrd effects in chromatin.  相似文献   

12.
13.
Isopeptidase is a novel eukaryotic enzyme that cleaves a structural chromatin protein, A24, stoichiometrically into H2A and ubiquitin. To understand the rapid turnover of ubiquitin in mitosis as wells as the high specific activity of the enzyme associated with metaphase chromosomes, attempts were made to determine chromatin constituents that show high affinity for this enzyme. Endogenous protease-free isopeptidase was prepared from calf thymus and applied to a Sepharose 4B affinity column on which histones, DNA, NHCP and ubiquitin were respectively immobilized. The enzyme proved to bind only histones. To further determine which of the histone fractions is involved, affinity columns with each histone fraction were also used. The enzyme showed affinity for all histone fractions. However, the strength of affinity varied in the order H2A>H3 H2B≥H4?H1, being inversely correlated with the ratio of basic/acidic amino acids in these molecules. These results suggest that the turnover of A24 in mitosis is controlled, at least in part, by the affinity of enzyme for histones, and also that such affinity is caused by a mechanism which cannot be explained simply by the electrostatic interaction between negatively charged enzyme molecules and positively charged histones.  相似文献   

14.
Nucleoplasmin (NP), a histone chaperone, acts as a reservoir for histones H2A-H2B in Xenopus laevis eggs and can displace sperm nuclear basic proteins and linker histones from the chromatin fiber of sperm and quiescent somatic nuclei. NP has been proposed to mediate the dynamic exchange of histones during the expression of certain genes and assists the assembly of nucleosomes by modulating the interaction between histones and DNA. Here, solution structural models of full-length NP and NP complexes with the functionally distinct nucleosomal core and linker histones are presented for the first time, providing a picture of the physical interactions between the nucleosomal and linker histones with NP core and tail domains. Small-angle X-ray scattering and isothermal titration calorimetry reveal that NP pentamer can accommodate five histones, either H2A-H2B dimers or H5, and that NP core and tail domains are intimately involved in the association with histones. The analysis of the binding events, employing a site-specific cooperative model, reveals a negative cooperativity-based regulatory mechanism for the linker histone/nucleosomal histone exchange. The two histone types bind with drastically different intrinsic affinity, and the strongest affinity is observed for the NP variant that mimicks the hyperphosphorylated active protein. The different “affinity windows” for H5 and H2A-H2B might allow NP to fulfill its histone chaperone role, simultaneously acting as a reservoir for the core histones and a chromatin decondensing factor. Our data are compatible with the previously proposed model where NP facilitates nucleosome assembly by removing the linker histones and depositing H2A-H2B dimers onto DNA.  相似文献   

15.
The modification patterns of histones present in various forms of intracellular simian virus 40 nucleoprotein complexes were analyzed by acetic acid-urea-polyacrylamide gel electrophoresis. The results showed that different viral nucleoprotein complexes contain different histone patterns. Simian virus 40 chromatin, which contains the activities for the synthesis of viral RNA and DNA, exhibits a histone modification pattern similar to that of the host chromatin. However, virion assembly intermediates and mature virions contain highly modified histones. Pulse-chase experiments with [3H]lysine showed that the newly incorporated histones in the virion assembly intermediates were already highly modified. The majority of in vivo acetylation activity of histones occurred on the 70S simian virus 40 chromatin as analyzed by pulse-labeling with [3H]acetate. These results and our previous analysis of the virion assembly pathway suggest that three stages are involved in the packaging of simian virus 40 chromatin into the mature virion: (i) modification of histones, (ii) accumulation of capsid protein around the chromatin with highly modified histones, and (iii) organization of capsid proteins into salt-resistant shells. The role of histone modification in virion assembly is discussed.  相似文献   

16.
Properties of chromatin subunits from developing trout testis.   总被引:5,自引:0,他引:5  
When a sample of trout testis nuclei is digested with micrococcal nuclease, the DNA is cleaved almost entirely to discrete fragments approximately 200 base pairs long and multiples thereof. The same DNA fragments can be obtained when isolated chromatin, as opposed to intact nuclei, is nuclease digested. These DNA fragments can also be found in discrete chromatin "subunits" isolated from nuclease-digested nuclei. Sedimentation through sucrose gradients or velocity sedimentation in an analytical ultracentrifuge separates these chromatin subunits into 11 S (monomer), 16 S (dimer), and 22 S (trimer) etc. species. Subunits can also be fractionated on a Sepharose 2B column equilibrated and run in low salt. High salt (greater than 40 mM NaCl) or divalent cations (congruent to 5 mM) cause subunit precipitation. Chromatin subunits have a protein to DNA ratio of approximately 1.2 and contain all the histones, including the trout-specific histone T. There are, however, no detectable nonhistone chromosomal proteins. Mg-2+ precipitates of the 11 S chromatin monomers, when pelleted, are thin and clear, while oligomer Mg-2+ pellets are thick and white. This could reflect a more symmetrical or ordered packing of 11 S monomers, which are deficient in histone I. This histone may cross-link the larger oligomers, resulting in a disordered Mg-2+ complex. These results are consistent with the subunit model of chromatin structure, based on 200 base pair long regions of DNA associated with histones. These subunits would be separated by nuclease-sensitive DNA spacer regions and cross-linked by histone I.  相似文献   

17.
18.
Histone shuttling by poly ADP-ribosylation   总被引:5,自引:0,他引:5  
The enzymes poly(ADP-ribose)polymerase and poly(ADP-ribose) glycohydrolase may cooperate to drive a histone shuttle mechanism in chromatin. The mechanism is triggered by binding of the N-terminal zinc-finger domain of the polymerase to DNA strand breaks, which activates the catalytic activities residing in the C-terminal domain. The polymerase converts into a protein carrying multiple ADP-ribose polymers which displace histones from DNA by specifically targeting the histone tails responsible for DNA condensation. As a result, the domains surrounding DNA strand breaks become accessible to other proteins. Poly(ADP0ribose) glycohydrolase attacks ADP-ribose polymers in a specific order and thereby releases histones for reassociation with DNA. Increasing evidence from different model systems suggests that histone shuttling participates in DNA repairin vivo as a catalyst for nucleosomal unfolding.  相似文献   

19.
Structural transition in chromatin induced by ions in solution   总被引:4,自引:3,他引:1       下载免费PDF全文
Structural transition in chromatin was measured as a function of counter ions in solution (NaCl or MgCl(2)) and of histones bound on the DNA. The addition of counter ions to aqueous solutions of chromatin, partially dehistonized chromatin, and DNA caused a drastic reduction in viscosity and a significant increase in sedimentation coefficient. Transitions occurred primarily at about 2 x 10(-3) M NaCl and 1 x 10(-5) M MgCl(2) and are interpreted as a change in structure of chromatin induced by tight binding of cations (Na(+) or Mg(++)) to DNA, either free or bound by histones, and is an intrinsic property of DNA rather than of the type of histone bound. At a given ionic condition, removal of histone H1 from chromatin had only a minor effect on the hydrodynamic properties of chromatin while removal of other histones caused a drastic change in these properties. An increase in the sedimentation coefficient of DNA was observed also for protamine. DNA complexes wherein the bound protein contains only unordered coil rather than the alpha-helices found in histones.  相似文献   

20.
Modification of histone binding in calf thymus chromatin by protamine.   总被引:3,自引:0,他引:3  
T K Wong  K Marushige 《Biochemistry》1975,14(1):122-127
When calf thymus chromatin is incubated with protamine, the protein binds to DNA, forming a chromatin-protamine complex. The binding reaches a saturating level at the weight ratio of protamine to DNA of approximately 0.5. Although the saturated binding of protamine to DNA does not cause major displacement of histones from calf thymus chromatin, examination of the dissociation profiles by salt in combination with urea of protamine-treated chromatin shows that the histone-DNA interactions are markedly altered by such binding. The dissociation of histones from the chromatin-protamine complex requires less NaCl but the same concentration of urea as that for untreated chromatin, suggesting that the electorstatic interactions between the histones and DNA are decreased as a result of protamine binding. When protamine concentration is increased beyond that required for saturated binding to DNA during in vitro exposure of calf thymus chromatin to protamine, lysine-rich histone is completely displaced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号