首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition by chlorgyline and deprenyl of deamination of tyramine, i. e. substrate of two forms of monoamine oxidase (MAO) A and B, by fragments of rat liver mitochondrial membrane and the effects of competitive reversible inhibitors of the MAO activity, e. g. 4-ethylpyridine, benzyl alcohol, O-benzyl-hydroxylamine and 2-oxyquinoline, on this process were studied. It was shown that all the inhibitors used sharply increase the inhibiting effect of chlorgyline on tyramine deamination, the degree of the stimulating effect being the same irrespective of whether the inhibitors are added to the samples before or after a 30-min preincubation of chlorgyline with the enzyme at 23 degrees, i. e. after the onset of irreversible inhibition. The stimulating effect is due to the independent action of two inhibitors on the two different sites of the MAO active center: chlorgyline--on the isoalloxazine ring of FAD, that of 4-ethylpyridine, benzyl alcohol, O-benzylhydroxylamine, 2-oxyquinoline, respectively, on the hydrophobic region involved in tyramine binding. In similar experiments with deprenyl all the competitive inhibitors used, when added to the samples after a 30-min incubation of the inhibitor with the enzyme at 23 degrees, remove the inhibiting effect of deprenyl on tyramine deamination. The decrease of the inhibiting effect of deprenyl is indicative of an existence of competitive interactions between deprenyl and the above-mentioned compounds and of the reversible inhibition by deprenyl of tyramine deamination under the given experimental conditions. The data obtained revealed the differences in the type and mechanism of action of chlorgyline and deprenyl on tyramine deamination and showed that these inhibitors act on different sites of the MAO active center, responsible for tyramine oxidation. Chlorgyline blocks primarily the "flavin moiety" of the MAO molecule, essential for the catalytic act, while the effect of deprenyl is directed to the hydrophobic part of the enzyme active center essential for the enzyme binding to tyramine. In this case the irreversible inhibiting effect is achieved at a slower rate and the reversibility of tyramine oxidation by deprenyl is maintained for a longer period of time than the chlorgyline inhibition of deamination of this amine.  相似文献   

2.
Study of the substrate-inhibitory specificity of mitochondrial monoamine oxidase (MAO) of hepatopancreas of the octopus Bathypolypus arcticus revealed distinctive peculiarities of catalytic properties of this enzyme. The studied enzyme, on one hand, like the classic MAO of homoiothermal animals, is able to deaminate tyramine, serotonin, benzylamine, tryptamine, b-phenylethylamine, while, on the other hand, it deaminates histamine and does not deaminate putrescine-classic substrates of diamine oxidase (DAO). Results of the substrate-inhibitory analysis with use of chlorgiline and deprenyl are indirect proofs for the existence in the octopus hepatopancreas of one molecular MAO form. Semicarbazide and pyronine G turned out to be weak irreversible inhibitors, four derivatives of acridine-irreversible inhibitors of the intermediate effectiveness with respect to the octopus hepatopancreas MAO; specificity of action of inhibitors at deamination of different substrates was equal.  相似文献   

3.
A study of substrate–inhibitor specificity of mitochondrial monoamine oxidase (MAO) in the hepatopancreas of the adult Kamchatka crab Paralithodes camtschaticus revealed specific catalytic properties of the enzyme. On the one hand, crab hepatopancreas MAO, like its classical hepatic counterpart, can deaminate tyramine, tryptamine, dopamine, serotonin, noradrenalin, benzylamine, β-phenylethylamine and N-methylhistamine but shows no sensitivity to 10 mM semicarbazide. On the other hand, MAO deaminates histamine but not putrescine, two classical diamine oxidase (DAO) substrates. It was established that MAO activity was several times higher toward benzylamine, β-phenylethylamine and N-methylhistamine than toward serotonin and noradrenalin. MAO was also found to be almost 500 times more sensitive to its selective inhibitor deprenyl than to chlorogilyn. A substrate–inhibitory analysis with the use of deprenyl and chloroginyl provides an indirect evidence for the existence of a sole MAO molecular form in the Kamchatka crab hepatopancreas.  相似文献   

4.
Sunopsis Monoamine oxidase (MAO) activity has been demonstrated histochemically in rat hypothalamic ependyma using the sulphate-tetrazolium and coupled peroxidatic techniques with tryptamine, tyramine, 5-hydroxytryptamine and benzylamine as substrates. Both methods were applied to cryostat sections with and without exposure to selective amine oxidase inhibitors, including the selective A-MAO inhibitor clorgyline, and the B-MAO inhibitor deprenyl. Our results show that both cuboidal-columnar and tanycyte ependyma contain one or more forms of MAO not generally present in the hypothalamus. It is suggested that ependymal MAO may form an amine-barrier system modulating the movement and effect within the hypothalamus of specific cerebrospinal fluid or blood monoamines.  相似文献   

5.
Effects of a selective monoamine oxidase (MAO)--A inhibitor, clorgyline, a selective MAO-B inhibitor, deprenyl, and a non-selective MAO inhibitor, nialamide, were investigated on footshock-induced aggression (FIA) in paired rats. The doses and pretreatment times of the inhibitors used were based on an earlier reported in vivo dose-response and time-course study. In addition, apomorphine, a dopaminergic receptor agonist, and beta-phenylethylamine, a preferred substrate for MAO-B, were also used to garner corroborative evidence. The results of the study indicate that selective MAO-A inhibitors are likely to attenuate FIA by augmenting central serotonergic activity, while selective MAO-B inhibitors accentuate the behaviour by facilitating dopaminergic activity. A permissive role for noradrenaline could not be delineated by the available data.  相似文献   

6.
The characteristics of mitochondrial monoamine oxidase (MAO) in carp liver were studied with MAO inhibitors and substrates. This enzyme was thermolabile, but was stabilized in the presence of bovine serum albumin. With clorgyline and deprenyl, single-sigmoidal curves for inhibition of the activity towards tyramine or 5-hydroxytryptamine were obtained; the sensitivities to the two inhibitors were identical. The activity towards β-phenylethylamine was not completely inhibited by clorgyline or deprenyl, but the remaining activity was inhibited by semicarbazide and the inhibition curves by either clorgyline or deprenyl and semicarbazide were also identical to the curves with the other two substrates. These results suggest that carp liver mitochondria contain “classical” MAO and a clorgyline- and deprenyl-resistant amine oxidase and that the classical MAO does not seem to be MAO-A or MAO-B, which are present in mitochondria of most mammalian tissues.  相似文献   

7.
Substrate Selectivity of Type A and Type B Monoamine Oxidase in Rat Brain   总被引:5,自引:5,他引:0  
Abstract: Use of the irreversible inhibitors clorgyline and deprenyl showed that rat brain mitochondria contain type A and type B monoamine oxidase (MAO). Tyramine is a substrate for both types of MAO, whereas serotonin is a preferential substrate for type A MAO. In contrast to MAO in other tissues, type A MAO in brain tissue oxidizes β-phenylethylamine (PEA) at high concentrations (0.5 and 1.0 mM). The proportions of type A and type B MAO activities in the mitochondria estimated from the double-sigmoidal inhibition curves of tyramine oxidation were about 70:30 irrespective of the concentration of tyramine. With PEA as substrate, the ratios of type A to type B activities were found to increase from low values at low concentrations to about 1 at 0.5-1.0 mM-PEA, and even higher at further increased concentrations of PEA. At very low (0.01 mM) and high (10.0 mM) concentrations of PEA, single-sigmoidal curves were obtained; with the high PEA concentration the activity was highly sensitive to clorgyline, whereas with the low concentration it was highly sensitive to deprenyl. In deprenyl-pretreated mitochondrial preparations, all the remaining activity towards 0.5-1.0 mM-PEA was shown to be highly sensitive to clorgyline, demonstrating that this activity was indeed due to oxidation by type A MAO. The opposite result was obtained with deprenyl as inhibitor of clorgyline-pretreated preparations, demonstrating that PEA at this concentration was also oxidized by type B MAO in rat brain mitochondria. The K3 values of type A and type B MAO for PEA were significantly different. On Lineweaver-Burk analysis, plots with PEA as substrate for type A MAO in a deprenyl-treated preparation were linear over a wide concentration range, whereas those for type B MAO in a clorgyline-treated preparation were not linear, but showed substrate inhibition at higher concentrations of the substrate. It is concluded from the present findings that the effect of the substrate concentration must be considered in studies on the characteristics of multiple forms of MAO in various organs and species.  相似文献   

8.
The superior cervical ganglion (SCG), pineal body (PB), and liver (L) of the rat, rabbit and cat were stained for monoamine oxidase (MAO) A and B by the tetranitro blue tetrazolium (TNBT) and coupled peroxidase ( PerOx ) methods, using 5-hydroxytryptamine (5HT), tryptamine ( Tryp ), tyramine (Tyr), and benzylamine (Bz) as substrates, and clorgyline (Cl) and deprenyl (Dep), both at 10(-7) M, as selective inhibitors. The nodose ganglion (NG) and dorsal root ganglion (DRG) of the rabbit and cat were also studied. The results with rat tissues were consistent with published quantitative findings (SCG, MAO-A much greater than B; PB, MAO-A less than or equal to B; L, MAO-A = B). In the rabbit, the findings with the SCG were similar; the MAO activities of the PB were relatively resistant to both inhibitors; the MAO of the liver required 10(-4) M concentrations of both inhibitors to produce near total inhibition, suggesting that the liver contains an MAO distinct from MAO A and B. All cat tissues examined appeared to contain almost exclusively MAO-B. In this species 5HT, which is generally considered a selective substrate for MAO-A, was oxidized by MAO-B. The findings indicate that criteria for MAO-A, -B, and other subgroups must be defined for each species and tissue.  相似文献   

9.
The inhibition of the deamination of serotonin (the main substrate of monoamine oxidase (MAO) type A) by chlorgiline and deprenyl and of beta-phenylethylamine (the main substrate of the B type MAO) by fragments of rat liver mitochondrial membrane as well as the influence of 4-ethylpyridine on this process were studied. It was shown that the MAO activity of the mitochondrial membrane fragments was highly sensitive to chlorgiline, when serotonin was used as substrate, whereas a high sensitivity toward deprenyl was observed with beta-phenylethylamine as substrate. 4-Ethylpyridine (5.10(-3) M), a competitive and reversible inhibitor of the MAO activity, inhibited deamination of serotonin and beta-phenylethylamine by 34 and 30%, respectively. In experiments with chlorgiline (the specific inhibitor of MAO type A) 4-ethylpyridine (5.10(-3) M) introduced into the samples after preincubation of mitochondria with increasing concentrations of chlorgiline (30 min, 23 degrees C) decreased the inhibition by chlorgiline of the deamination of beta-phenylethylamine, but sharply increased the inhibitory effect of chlorgiline on the oxidation of serotonin. In analogous experiments with deprenyl (the specific inhibitor of MAO type B) 4-ethylpyridine (5.10(-3) M) decreased the inhibitory effect of deprenyl not only on the deamination of serotonin (substrate of MAO A), but also on the oxidation of beta-phenylethylamine (the main substrate of MAO type B). The decrease in the inhibitory effect of deprenyl on the deamination of beta-phenylethylamine after the addition of 4-ethylpyridine may be intensified upon preincubation of deprenyl with mitochondria in the presence of 4-ethylpyridine. The data obtained demonstrate the difference in the type and mechanism of inhibition of the deamination of serotonin by chlorgiline as well as in the type and mechanism of oxidation of beta-phenylethylamine by deprenyl. The possible mechanism of selective blocking of MAO activity by chlorgiline and deprenyl was discussed in terms of our previous data on the existence in the active center of mitochondrial MAO of specific sites for substrate binding, differing in their structure-functional characteristics.  相似文献   

10.
Studies using clorgyline, deprenyl and semicarbazide as inhibitors showed that carp heart homogenate contained a new type of monoamine oxidase (MAO) and a clorgyline- and deprenyl-resistant amine oxidase (CRAO). The deamination of monoamines by carp heart MAO proceeded in two steps by a double-displacement (ping-pong) mechanism. The Km values of the MAO for oxygen (K0 values) with tyramine, 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) as substrates were identical (59 microM).  相似文献   

11.
Substrate and inhibitory specificity of mitochondrial monoamine oxidase (MAO) from liver of skipjack tuna Katsuwonus pelamis was studied. The results of substrate—inhibitory analysis with application of chlorgilin and deprenyl might be indirect proofs of existence of one molecular MAO form in the tuna liver. Studied enzyme, as liver MAO of terrestrial mammals, deaminates tyramine, tryptamine, dopamine, serotonin, noradrenalin, benzylamine, β-phenylethylamine, N-methylhistamine and does not deaminate histamine, is not suppressed by 10 mM semicarbazide. Takrin, acriflavin, proflavin, acridine orange and pyronine G were established to be irreversible inhibitors of middle strength in respect to MAO of tuna liver. The specificity of inhibitors action upon deamination of various substrates was equal.  相似文献   

12.
Pargyline, an inhibitor of monoamine oxidase type B (MAO-B), did not prevent the depletion of heart norepinephrine 24 hr after a single dose of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice. In mice killed 24 hr after the last of 4 daily doses of MPTP, the depletion of dopamine in the striatum and of norepinephrine in the frontal cortex was completely prevented by pargyline, but the depletion of heart norepinephrine was not prevented. These results with pargyline are the same as results obtained earlier with deprenyl, another selective inhibitor of MAO-B. The doses of pargyline and of deprenyl that were used resulted in almost complete inhibition of MAO-B activity (phenylethylamine as substrate) in brain, heart and liver of mice. Deprenyl did not inhibit MAO-A activity (serotonin as substrate) in brain, but pargyline caused some inhibition of MAO-A in brain. In heart and liver, serotonin was oxidized only at about 1/10 the rate of phenylethylamine oxidation, suggesting that MAO-B predominates in these tissues. Both pargyline and deprenyl caused some inhibition of serotonin deamination in heart and liver, suggesting that the oxidation may have been due partly to MAO-B. Experiments with selective MAO inhibitors in vitro showed that only about 20% of the oxidation of serotonin was occurring via MAO-B in heart and liver. The in vitro oxidation of MPTP by MAO in mouse brain, heart and liver was almost completely inhibited by pretreatment with either pargyline or deprenyl. Neither pargyline nor deprenyl had any significant effect on the concentrations of MPTP in brain or heart one-half hr after injection of MPTP into mice. The concentrations of the metabolite, MPP+ (1-methyl-4-phenyl-pyridinium), were markedly reduced in brain and in heart by pretreatment with either pargyline or deprenyl. The data suggest that MPP+ formation, which is necessary for the depletion of brain catecholamines after MPTP injection, may not be necessary for depletion of norepinephrine in heart. Since the oxidation of MPTP in vitro was inhibited more by pargyline or deprenyl pretreatment than was the appearance of MPP+ in vivo, the possibility exists that some MPP+ formation might occur by an enzyme other than MAO.  相似文献   

13.
Adiponectin production during adipocyte differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) can be used to evaluate the pharmacological activity of anti-diabetic drugs to improve insulin sensitivity. Monoamine oxidase (MAO) inhibitors such as phenelzine and pargyline inhibit adipogenesis in murine pre-adipocytes. In this study, however, we found that selective MAO-A inhibitors, moclobemide and Ro41-1049, and a selective MAO-B inhibitor, selegiline, promoted adiponectin production during adipocyte differentiation in hBM-MSCs, which suggested the anti-diabetic potential of these drugs. In contrast, non-selective MAO inhibitors, phenelzine and tranylcypromine, inhibited adipocyte differentiation of hBM-MSCs. Concomitant treatments of MAO-A and MAO-B selective inhibitors did not change the stimulatory effect on adiponectin production in hBM-MSCs. Taken together, the opposite effects of isotype-selective MAO inhibitors on adiponectin production during adipogenesis in hBM-MSCs may not be directly associated with the inhibitory effects of MAO, suggested that the structure of MAO inhibitors may contain a novel anti-diabetic pharmacophore.  相似文献   

14.
Abstract

The substrate- and inhibitor-related characteristics of monoamine oxidase (MAO) were studied for catfish brain and liver. The kinetic constants for MAO in both tissues were determined using 5-hydroxytryptamine (5-HT), tyramine and β-phenylethylamine (PEA) as substrates. For both tissues, the Vmax values were highest with 5-HT and lowest with PEA. The Km value for the brain was highest with 5-HT, followed by tyramine and PEA; but for the liver its value was highest with PEA, followed by 5-HT and tyramine, although all values were in the same order of magnitude. The inhibition of MAO by clorgyline and deprenyl by use of 5-HT, tyramine and PEA as substrates showed that the MAO-A inhibitor clorgyline was more effective than the MAO-B inhibitor deprenyl for both catfish tissues; a single form was present since inhibition by clorgyline or deprenyl with 1000 μM PEA showed single phase sigmoid curves. It is concluded that catfish brain and liver contain a single form of MAO, relatively similar to mammalian MAO-A.  相似文献   

15.
Comparative study of substrate specificity of monoamine oxidase (MAO) of optic ganglia of the Pacific squid Todarodes pacificus and the Commander squid Berryteuthis magister has been carried out. The enzyme of the Pacific squid, unlike that of the Commander squid, has been established to be able to deaminate not only tyramine, tryptamine, serotonin, benzylamine, and β-phenylethylamine, but also histamine-substrate of diamine oxidase (DAO). In relation to all studied substrates, the MAO activity of optic ganglia of T. pacificus is several times higher as compared with that of B. magister. In the case of deamination of serotonin this difference was the highest and amounted to 5 times. Semicarbazide, the classic DAO inhibitor, at a concentration of 10 mM did not inhibit catalytic activity of both studied enzymes. The substrate-inhibitory analysis with use of deprenyl and clorgyline, specific inhibitors of different MAO forms, indicates homogeneity of the enzyme of the Pacific squid and heterogeneity of the Commander squid enzyme whose composition seems to contain at least two MAO forms. There are obtained quantitative differences in substrate specificity and reaction capability with respect to the inhibitors clorgylin and deprenyl for MAO of optic ganglia of the studied squid species. These differences probably can be explained by significant differences in the evolutionary level of these biological species.  相似文献   

16.
H C Kung  A G Wilson 《Life sciences》1979,24(5):425-431
The substrate specificities and kinetics of rat lung monoamine oxidase (MAO) have been studied. Utilizing the irreversible MAO inhibitors, clorgyline and deprenyl, rat lung was shown to possess at least two types of MAO, A and B. Tyramine was a substrate for both forms of the enzyme, whereas 5-hydroxytryptamine (5-HT) was a preferred substrate for the A-form. In contrast to most other tissues, 2-phenylethylamine was not solely a B-type substrate for the rat lung MAO and some metabolism by the A-type was apparent (BA = 8020). Using tyramine as substrate the ratio A/B was shown to be 5545. Rat pulmonary MAO-B was inhibited by deprenyl and the kinetics of MAO-A studied. The Km values for the A-form for tyramine, phenylethylamine and 5-HT were relatively similar and were 270, 244 and 170 μM respectively. Whereas, when the A-form was inhibited by clorgyline, the Km values for the B-form were found to differ considerably: 330, 42 and 850 μM for tyramine, phenylethylamine and 5-HT respectively.  相似文献   

17.
Summary In the mammalian pineal gland, serotonin (5-HT) is located both in the pinealocytes and in the noradrenergic nerve terminals. Pineal 5-HT can be metabolized by three different routes, one of these being its deamination, catalized by monoamine oxidase (MAO). MAO is known to exist as two isozymes, MAO-A and MAO-B. Using two different cytochemical methods at the ultrastructural level, we have localized the presence of MAO in the pineal gland of the rat. The use of selective inhibitors of A-type (clorgyline) and B-type (deprenyl) has shown that MAO-A is localized in the noradrenergic nerve terminals, while pinealocytes contain MAO-B. Taking into account that 5-HT is only deaminated by MAO-A, the specific association of each MAO isozyme with a defined cell type implicates that two cellular compartments are needed in the pineal gland for the biosynthesis of 5-methoxytryptophol and 5-methoxyindole acetic acid, while for the synthesis of melatonin and 5-methoxytryptamine just one cellular compartment, the pinealocyte, is appropriate.  相似文献   

18.
Monoamines are able to increase the thyroid iodine organification in vitro. A predominance of the A form of monoamine oxidase (MAO) has been previously demonstrated to exist in bovine thyroid tissue. In the present study we have investigated the form of MAO that could be involved in the iodotyrosine formation induced by tyramine, 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) in a bovine thyroid subcellular fraction. The relative capacity of these monoamines to generate H2O2 and to incorporate iodine into tyrosine has also been studied. The MAO A inhibitor clorgyline (10(-9) M) produced a strong inhibition on the iodotyrosine formation induced by tyramine, 5-HT and PEA. In contrast, only a slight reduction was observed with deprenyl as MAO B inhibitor. Among the three monoamines, tyramine produced the highest H2O2 generation and iodotyrosine formation. The lowest Km value obtained was for 5-HT and the highest for PEA. Regarding the Vmax, the lowest value was for 5-HT and the highest for tyramine. The amount of iodine incorporated to tyrosine was not equivalent to the H2O2 generated by the monoamines nor to that exogenously added. Our results indicate that in bovine thyroid tissue mainly the A form of MAO is involved in the monoamine metabolism.  相似文献   

19.
We have examined the changes induced by the monoamine oxidase (MAO; EC 1.4.3.4) inhibitors tranylcypromine, clorgyline, and deprenyl on MAO activity and 5-hydroxytryptamine (serotonin, 5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in rat brain and blood (plasma and whole blood). The decreases of MAO-A activity observed in the liver and lungs after different doses of clorgyline or tranylcypromine correlated significantly (r > 0.80 in all cases) with the decline of plasma 5-HIAA. This was unaffected by 0.25 and 5 mg kg?1 of deprenyl, indicating that 5-HT was deaminated exclusively in the periphery by MAO-A. It is interesting that very potent and significant correlations (r > 0.75) were found between plasma 5-HIAA and MAO-A activity, 5-HIAA and 5-HT content in brain tissue. These results suggest that plasma 5-HIAA can be used confidently as a peripheral indicator of the inhibition of MAO-A in brain. This may represent a favorable alternative to the analysis of 5-HIAA in CSF in psychiatric patients undergoing antidepressant treatment with nonspecific MAO inhibitors or with the new selective MAO-A inhibitors.  相似文献   

20.
Cultured C6 rat glial cells preferentially deaminated 5-hydroxytryptamine, tryptamine, dopamine and tyramine in comparison to phenylethylamine and benzylamine. Deamination of all substrates was uniformly sensitive to inhibition by clorgyline and relatively insensitive to deprenyl. These data together with the observations of simple sigmoid curves for the inhibition of tyramine deamination by both inhibitors suggest that C6 glial cells contain mainly monoamine oxidase type A, which previously had been suggested to be primarily an intraneuronal MAO type. As these findings are in agreement with other studies of brain MA0 activity in mitochondria separated from neuronal vs glial cell preparations, they help explain why MA0 activity measured with some substrates may be little affected by lesions or by drugs producing nerve ending degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号