首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 536 毫秒
1.
Continuous production of diatom Entomonies sp. was performed in mechanically stirred tank and flat-panel airlift photobioreactors (FPAP). The maximum specific growth rate of diatom from the batch experiment was 0.98 d?1. A series of dilution rate and macronutrient concentration adjustments were performed in a stirred tank photobioreactor and found that the dilution rate ranged from 0.7 to 0.8 d?1 and modified F/2 growth media containing nitrate at 3.09?mg N/L, phosphate at 2.24?mg P/L, and silicate at 11.91?mg Si/L yielded the maximum cell number density. Finally, the continuous cultivation of Entomonies sp. was conducted in FPAP using the optimal conditions determined earlier, resulting in the maximum cell number density of 19.69?×?104 cells/mL, which was approximately 47 and 73% increase from the result using the stirred tank photobioreactor fed with modified and standard F/2 growth media, respectively.  相似文献   

2.
Pilot plant studies were performed using a concentric-tube airlift bioreactor of 2.5 m3 fermentation volume. The results have proven the relative merits of such a system in the biosynthesis of nystatin, produced by Streptomyces noursei, in submerged aerobic cultivation and batch operation mode. The results were compared to those obtained in a pilot-scale stirred tank bioreactor of 3.5 m3 fermentation volume. The fermentation processes in the two fermentation devices were similar with respect to substrate utilization, biomass production and nystatin biosynthesis. In the riser section, the dissolved oxygen concentration was higher than that in the downcomer. The volumetric oxygen mass transfer coefficient was dependent on the rheological behaviour of the biosynthesis liquids, which was not constant during the fermentation process. The total energy consumption for nystatin production in the airlift bioreactor was 56% of that in the stirred tank, while the operating costs represented 78% of those in the stirred tank bioreactor.  相似文献   

3.
TransgenicNicotiana tabacum cells were cultivated for the production of murine granulocyte macrophage-colony stimulating factor (mGM-CSF) in both a stirred, tank biore|actor and an airlift bioreactor with draft tube. Cell growth and mGM-CSF production in the airlift bioreactor were found to be better than those achieved in the stirred tank bioreactor. In the airlift bioreactor. 9.0 g/L of cells and 2.2 ng/mL of mGM-CSF were obtained (11.0 g/L and 2.4 ng/mL, respectively in shake flasks). Although the lag period was prolonged and mGM-CSF production was lowered by 33% in the stirred tank bioreactor as compared to the control culture, the maximum cell density was increased up to 12.0 g/L due to better mixing by agitation at the higher cell density.  相似文献   

4.
Rhizopus oryzae was immobilized on a cotton matrix in a static bed bioreactor. Compared with free cells in a stirred tank bioreactor, immobilized R. oryzae in this bioreactor gave higher lactic acid production but lower ethanol production. The highest lactic acid production rate (2.09 g/L h) with the final concentration of 37.83 g/L from 70 g/L glucose was achieved when operating the bioreactor at 700 rpm and 0.5 vvm air. To better understand the relationship between shear effects (agitation and aeration) and R. oryzae morphology and metabolism, oxygen transfer rate, fermentation kinetics, and lactate dehydrogenase activity were determined. In immobilized cell culture, higher oxygen transfer rate and lactic acid production were achieved but lower lactate dehydrogenase activity was found as compared with those in free cell culture operated at the same conditions. These results clearly imply that mass transport was the rate controlling step in lactic acid fermentation by R. oryzae.  相似文献   

5.
Abstract

PGHX is a polymer of β (1-3)-galactose which posses the gel-forming property. As previously reported in the flask culture experiment, the crude PGHX (24.9?g/L, 48.2% in yield) with the maximum gel strength of 957?g/cm2 can be generated. However, PGHX produced in the stirred bioreactor had no gel-forming property when using the same medium. Hence, the effects of different glycerol concentrations on both the yield and the gel-forming property of PGHX were investigated and the reason for gel-forming property losing was explored. We proposed a new strategy for the production of PGHX with enhanced gel formation in the stirred bioreactor by mediating both the concentration of carbon source and the duration of fermentation. As a result, we managed to obtain the crude PGHX (22?g/L, 42.4% in yield) with the maximum gel strength of 438?g/cm2 at 56?h in the bioreactor. This strategy would help the enhancement of PGHX yield in the industrial production.  相似文献   

6.
Scale up studies for production of lipoic acid (LA) from Saccharomyces cerevisiae have been reported in this paper for the first time. LA production in batch mode was carried out in a stirred tank bioreactor at varying agitation and aeration with maximum LA production of 512 mg/L obtained at 350 rpm and 25 % dissolved oxygen in batch culture conditions. Thus, LA production increased from 352 mg/L in shake flask to 512 mg/L in batch mode in a 5 L stirred tank bioreactor. Biomass production under these conditions was mathematically explained using logistic equation and data obtained for LA production and substrate utilization were successfully fitted using Luedeking–Piret and Mercier’s models. The kinetic studies showed LA production to be growth associated. Further enhancement of LA production was carried out using fed-batch (variable volume) and semi-continuous modes of fermentation. Semi-continuous fermentation with three feeding cycles of sucrose effectively increased the production of LA from 512 to 725 mg/L.  相似文献   

7.
In this study we maximized biomass production by the basidiomycete Ganoderma australe ATHUM 4345, a species of pharmaceutical interest as it is a valuable source of nutraceuticals, including dietary fibers and glucans. We used the Biolog FF MicroPlate to screen 95 different carbon sources for growth monitoring. The pattern of substrate catabolism forms a substrate assimilation fingerprint, which is useful in selecting components for media optimization of maximum biomass production. Response surface methodology, based on the central composite design was applied to explore the optimum concentrations of carbon and nitrogen sources of culture medium in shake flask cultures. When the improved culture medium was tested in a 20‐L stirred tank bioreactor, using 13.7 g/L glucose and 30.0 g/L yeast extract, high biomass yields (10.1±0.4 g/L) and productivity of 0.09 g L?1 h?1 were obtained. The yield coefficients for total glucan and dietary fibers on biomass formed were 94.82±6 and 341.15±12.3 mg/g mycelium dry weight, respectively.  相似文献   

8.
Using a generalSaccharomyces cerevisiae as a model strain, continuous ethanol fermentation was carried out in a stirred tank bioreactor with a working volume of 1,500 mL. Three different gravity media containing glucose of 120, 200 and 280 g/L, respectively, supplemented with 5 g/L yeast extract and 3 g/L peptone, were fed into the fermentor at different dilution rates. Although complete steady states developed for low gravity medium containing 120 g/L glucose, quasi-steady states and oscillations of the fermented parameters, including residual glucose, ethanol and biomass were observed when high gravity medium containing 200 g/L glucose and very high gravity medium containing 280 g/L glucose were fed at the designated dilution rate of 0.027 h−1. The observed quasi-steady states that incorporated these steady states, quasi-steady states and oscillations were proposed as these oscillations were of relatively short periods of time and their averages fluctuated up and down almost symmetrically. The continuous kinetic models that combined both the substrate and product inhibitions were developed and correlated for these observed quasi-steady states.  相似文献   

9.
《Process Biochemistry》2007,42(1):93-97
Successful scale-up of Azadirachta indica suspension culture for azadirachtin production was done in stirred tank bioreactor with two different impellers. The kinetics of biomass accumulation, nutrient consumption and azadirachtin production of A. indica cell suspension culture were studied in a stirred tank bioreactor equipped with centrifugal impeller and compared with similar bioreactor with a setric impeller to investigate the role of O2 transfer efficiency of centrifugal impeller bioreactor on overall culture metabolism. The maximum cell mass for centrifugal impeller bioreactor and stirred tank bioreactor (with setric impeller) were 18.7 and 15.5 g/L (by dry cell weight) and corresponding azadirachtin concentrations were 0.071 and 0.05 g/L, respectively. Glucose and phosphate were identified as the major growth-limiting nutrients during the bioreactor cultivation. The centrifugal impeller bioreactor demonstrated less shearing and improved O2 transfer than the stirred tank bioreactor equipped with setric impeller with respect to biomass and azadirachtin production.  相似文献   

10.
An upflow packed-bed cell recycle bioreactor (IUPCRB) is proposed for obtaining a high cell density. The system is comprised of a stirred tank bioreactor in which cells are retained partially by a packed-bed. A 1.3 cm (ID) × 48 cm long packed-bed was installed inside a 2 L bioreactor (working volume 1 L). Continuous ethanol fermentation was carried out using a 100 g/L glucose solution containing Saccharomyces cerevisiae (ATCC 24858). Cell retention characteristics were investigated by varying the void fraction (VF) of the packed bed by packing it with particles of 0.8∼2.0 mm sized stone, cut hollow fiber pieces, ceramic, and activated carbon particles. The best results were obtained using an activated carbon bed with a VF of 30∼35%. The IUPCRB yielded a maximum cell density of 87 g/L, an ethanol concentration of 42 g/L, and a productivity of 21 g/L/h when a 0.5 h−1 dilution rate was used. A natural bleeding of cells from the filter bed occurred intermittently. This cell loss consisted of an average of 5% of the cell concentration in the bioreactor when a high cell concentration (approximately 80 g/L) was being maintained.  相似文献   

11.
Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end‐product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA‐producing Aureobasidium pullulans strain ZX‐10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high‐titer equivalent to 87.6 g/L of malic acid and high‐productivity of 0.61 g/L h in free‐cell fermentation in a stirred‐tank bioreactor. Fed‐batch fermentations with cells immobilized in a fibrous‐bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA‐900 anion‐exchange resins, achieving a ~100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first‐order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Biotechnol. Bioeng. 2013; 110: 2105–2113. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

13.
《Process Biochemistry》2007,42(6):1033-1038
Valienamine is an important medicinal intermediate with broad use in the synthesis of some stronger α-glucosidase inhibitors. In order to improve valienamine concentration in the fermentation broth and make the downstream treatment easy, a fed-batch process for the enhanced production of valienamine by Stenotrophomonas maltrophilia in a stirred tank bioreactor was developed. Results showed that supplementation of validamycin A in the process of cultivation could increase the valienamine concentration. One-pulse feeding was observed to be the best strategy. The maximum valienamine concentration of 2.35 g L−1 was obtained at 156 h when 86.4 g of validamycin A was added to a 15-L bioreactor containing 8 L fermentation medium with one-pulse feeding. The maximum valienamine concentration had a great improvement and was increased above 100% compared to batch fermentation in the stirred tank bioreactor. The pH-controlled experiments showed that controlling the pH in the process of one-pulse feeding fermentation had not obvious effect on the production of valienamine.  相似文献   

14.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

15.
Recombinant Cupriavidus necator H 16 with a novel metabolic pathway using a cobalamin-dependent mutase was exploited to produce 2-hydroxyisobutyric acid (2-HIBA) from renewable resources through microbial fermentation. 2-HIBA production capacities of different strains of C. necator H 16 deficient in the PHB synthase gene and genetically engineered to enable the production of 2-HIBA from the intracellular PHB precursor (R)-3-hydroxybutyryl-CoA were evaluated in 48 parallel milliliter-scale stirred tank bioreactors (V = 11 mL). The effects of media composition, limitations, pH, and feed rate were studied with respect to the overall process performances of the different recombinant strains. 2-HIBA production was at a maximum at nitrogen limiting conditions and if the pH was controlled between 6.8 and 7.2 under fed-batch operating conditions (intermittent fructose addition). The final concentration of 2-HIBA was 7.4 g L−1 on a milliliter scale. Best reaction conditions identified on the milliliter scale were transferred to a laboratory-scale fed-batch process in a stirred tank bioreactor (V = 2 L). Two different process modes for the production of 2-HIBA, a single-phase and a dual-phase fermentation procedure, were evaluated and compared on a liter scale. The final concentration of 2-HIBA was 6.4 g L−1 on a liter scale after 2 days of cultivation.  相似文献   

16.
Fungi producing high xylanase levels have attracted considerable attention because of their potential industrial applications. Batch cultivations of Aspergillus terricola fungus were evaluated in stirred tank and airlift bioreactors, by using wheat bran particles suspended in the cultivation medium as substrate for xylanase and β-xylosidase production. In the stirred tank bioreactor, in physical conditions of 30°C, 300 rpm, and aeration of 1 vvm (1 l min−1), with direct inoculation of fungal spores, 7,475 U l−1 xylanase was obtained after 36 h of operation, remaining constant after 24 h. In the absence of air injection in the stirred tank reactor, limited xylanase production was observed (final concentration 740 U l−1). When the fermentation process was realized in the airlift bioreactor, xylanase production was higher than that observed in the stirred tank bioreactor, being 9,265 U l−1 at 0.07 vvm (0.4 l min−1) and 12,845 U l−1 at 0.17 vvm (1 l min−1) aeration rate.  相似文献   

17.
ABSTRACT

In this study, we optimised the conditions for the production of micropropagules of Trichoderma harzianum EGE-K38 in static liquid culture in Modified Czapec Medium (MCM) containing 8?g/L glucose in an integrated tray bioreactor system designed by our research group. Incubation temperature, air flow rate, inoculum spore concentration, inoculation size, medium volume and the use of spores or agar plugs containing mycelia as inoculum were individually studied as one factor at a time. The maximum micropropagule count was 5.2?±?0.2?×?109?cfu/mL and dry cell weight was 17?±?2?g/L. For the subsequent drying processes, the maximum drying yield percentage ((viable micropropagule counts after drying/viable cells before drying)*100) after drying of micropropagules was 23.30% (cfu/cfu). Results obtained from our integrated tray bioreactor system showed that static liquid culture fermentation offers potential for industrial scale fungal BCAs production.  相似文献   

18.
Abstract

In order to obtain a better fermentation parameter for the production of recombinant Ganoderma lucidum immunomodulatory protein (rFIP-glu), an engineered Pichia pastoris GS115 was investigated on the fermentation time, temperature, methanol concentration and initial pH of media, while immunomodulatory activities of the rFIP-glu was confirmed. L9(33) orthogonal experiment were firstly employed to optimize various fermentation parameters in the shake-flask level. The optimized fermentation parameters were subsequently verified in a 5?L fermenter. Biological activities including cell viability and tumor necrosis factor-alpha (TNF-α) mRNA of the rFIP-glu were evaluated on murine macrophage RAW264.7 cells. The results showed that the yield of rFIP-glu was up to 368.71?μg/ml in the shake-flask, and 613.47?μg/ml in the 5?L fermenter, when the Pichia pastoris was incubated in basic media with the methanol concentration 1.0% and initial pH 6.5, and with constant shaking at 280?rpm for 4?days at 26?°C. In vitro assays of biological activity indicated that rFIP-glu had significant toxicity against RAW264.7 cells, and possessed the ability to induce TNF-α mRNA expression in macrophage RAW264.7 cells. In conclusion, engineered P. pastoris showed a good fermentation property under the optimum fermentation parameters. It could be a candidate industrial strain for further study.  相似文献   

19.
采用玉米秸秆水解糖和玉米浆发酵生产丁二酸   总被引:1,自引:0,他引:1  
研究了以玉米秸秆水解糖为碳源,不同氮源条件下琥珀酸放线杆菌Actinobacillus succinogenesSF-9的丁二酸发酵产酸能力。结果表明玉米浆可以替代酵母膏作为丁二酸发酵的廉价氮源。厌氧摇瓶丁二酸发酵单因素试验,得到在初糖浓度50 g/L时,玉米浆的较佳用量为20 g/L。在5 L搅拌罐上,考察了不同初始玉米秸秆水解糖浓度对A.succinogenes SF-9发酵生产丁二酸的影响,结果显示高初始秸秆糖浓度对琥珀酸放线杆菌的生长有抑制作用。采用补料分批发酵,发酵60 h丁二酸的产量达到42.7g/L,丁二酸产率82.7%,生产强度0.81 g/(L·h)。丁二酸的产量和生产强度较分批发酵有明显提高。  相似文献   

20.
The possibility of using in situ addition of anion-exchange resin for the removal of acetate in the culture aimed at improving growth of E. coli and expression of periplasmic human interferon-α2b (PrIFN-α2b) was studied in shake flask culture and stirred tank bioreactor. Different types of anion-exchange resin were evaluated and the concentration of anion-exchange resin was optimized using response surface methodology. The addition of anion-exchange resins reduced acetate accumulation in the culture, which in turn, improved growth of E. coli and enhanced PrIFN-α2b expression. The presence of anion-exchange resins did not influence the physiology of the cells. The weak base anion-exchange resins, which have higher affinity towards acetate, yielded higher PrIFN-α2b expression as compared to strong anion-exchange resins. High concentrations of anion-exchange resin showed inhibitory effect towards growth of E. coli as well as the expression of PrIFN-α2b. The maximum yield of PrIFN-α2b in shake flask culture (501.8 μg/L) and stirred tank bioreactor (578.8 μg/L) was obtained at ion exchange resin (WA 30) concentration of 12.2 g/L. The production of PrIFN-α2b in stirred tank bioreactor with the addition of ion exchange resin was about 1.8-fold higher than that obtained in fermentation without ion exchange resin (318.4 μg/L).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号