首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Campuloclinium macrocephalum (Less.) DC. (Asteraceae) (pompom weed), an invader in South Africa and Swaziland, threatens biodiversity conservation, agriculture and tourism in the region. We report on the host range and impact of the flower-feeding moth, Cochylis campuloclinium Brown (Lepidoptera: Tortricidae), the second insect biological control agent to be considered for C. macrocephalum in South Africa. Laboratory host-specificity tests were conducted on 31 Asteraceae species. Field host range studies included 17 non-target Asteraceae species. Results of both C. campuloclinium laboratory and field host-range trials indicated that it is suitably host specific. In laboratory host-range trials, only C. macrocephalum and the closely related native, Adenostemma caffrum DC. (Asteraceae), received feeding damage, while in field host-range trials, the moth was only recorded on the target. Laboratory impact studies showed that C. campuloclinium destroyed a significant number of florets in flower buds (76%) and seeds in mature flowers (54%). Based on evidence from the native range, there appears to be no competitive interactions between C. campuloclinium and the already established stem- and leaf-deforming thrips, Liothrips tractabilis Mound & Pereyra (Thysanoptera: Phlaethripinae). The two insect agents should perform a complementary role of reducing flowering (L. tractabilis) and seed production (C. campuloclinium). Based on the above data, permission for the release of the moth was sought in August 2015.  相似文献   

2.
The potential impact of the larval feeding by Alagoasa extrema Jacoby (Coleoptera: Chrysomelidae: Alticinae) on potted plants of its host Lantana camara L. (Verbenaceae), a weed of major importance in South Africa, was examined. Under quarantine laboratory conditions, 2-month old plants of L. camara variety 029 White Pink were exposed to different larval feeding densities for a period of 18 days (completion of the larval stage). The above-ground dry mass of plants was significantly reduced following attack by larvae at densities of 5 larvae per plant (20% reduction) and 10 larvae per plant (28% reduction), when compared to unattacked plants. Attack by larvae over this short period had no significant impact on root growth. This demonstrates that A. extrema, once established in climatically favourable areas, could well augment other established agents in defoliating L. camara stands, reducing the accumulation of reserves and the competitiveness of the weed.  相似文献   

3.
Post-release monitoring of biological control agents to determine impact on the target weed has recently received increased priority. Several methods are available to measure the impact of a biological control agent by manipulating the agent population while measuring fitness of the weed. Brazilian peppertree, Schinus terebinthifolia is one of the most damaging weeds in subtropical areas of Florida and Hawaii. A biological control agent, the thrips, Pseudophilothrips ichini is a sap-feeder that shows high levels of specificity and causes severe distortion of leaf tips of the weed. Thrips populations of this species and a generalist thrips, the red banded thrips Selenothrips rubrocinctus were experimentally manipulated by applications of the systemic insecticide acephate by both foliar applications and by an inserted encapsulated formulation. Foliar applications protected plants against red banded thrips for 29 days and against the biological control thrips, P. ichini for 22 days after treatment. Control with inserts were initially low but was achieved after 60 days and this control continued for 182 days after treatment. Manipulation of these biological control thrips populations with foliar or inserted formulations will assist in the determination of biological control agent impact.  相似文献   

4.
Starfruit, Damasonium minus (R. Br.) Buch, is a herbicide-resistant, aquatic-weed occurring in Australian rice fields. The fungal pathogen Plectosporium alismatis (Oudem) W.M. Pitt, W. Gams & U. Braun is a potential mycoherbicide for the control of this weed. Previous work showed that the fungus can suppress the growth of starfruit juvenile plants. This paper reports the effect of environmental factors on the disease development on starfruit at the floating-leaf stage. Fungal inoculation of plants in advanced phases of floating leaf stage reduced significantly (P<0.05) the green leaf area, but only when the percentages of diseased areas were deducted. However, inoculation when the first floating leaf was emerging reduced significantly (P<0.001) both, plant dry above-ground biomass and leaf area.  相似文献   

5.
Recent studies have demonstrated, through their contrasting results, that relationships between nitrogen levels in host plants and phytophagous insect performance are not simple. This study examined the effect of varying fertilisation regimes on the invasive alien plant, Chromolaena odorata (L.) (Asteraceae) and the response of a specialist folivore (a biological control agent), Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae). C. odorata plants were treated with 3 different levels of fertilisation and plant characteristics were measured within 2–3 months of fertiliser application. Leaves from each of the three treatments were fed to newly hatched larvae until pupation in order to determine the effect of nitrogen fertilisation on herbivore performance metrics such as survival, development time, fecundity and longevity. High and medium fertilisation significantly increased foliar nitrogen concentrations, basal stem diameter, leaf length, shoot height and above-ground biomass of C. odorata plants relative to low fertilisation. When individuals of P. insulata were fed on leaves from medium- or high-fertilisation treatments, they developed faster, grew to a larger size (by 8%) and achieved higher fecundity (19–22%) than leaves from the low-fertilisation treatment. The results suggest that in mass-rearing, increased production of this biological control agent will occur in high- or medium-fertilised plants.  相似文献   

6.
Campuloclinium macrocephalum is an Asteraceous alien weed that invades roadside vegetation and grassland in South Africa. The role of allelopathy and competition in its invasiveness was investigated using Eragrostis curvula (weeping lovegrass, an indigenous grass), E. tef and Lactuca sativa (lettuce) as test species. Trials were conducted in Petri-dishes, pots and in the field. Root and shoot extracts of adult C. macrocephalum plants did not inhibit seed germination in any test species. The greatest effect was radicle stunting produced by leaf extracts at 10 and 25% w/v. Eragrostis curvula was less tolerant of the extracts than E. tef. Allelopathic effects could however not be confirmed in pot trials evaluating the interference potential of the weed or weed residue effects against E. curvula. E. curvula growth and biomass was not affected by plant densities of one or five C. macrocephalum per pot, whereas C. macrocephalum suffered a 17% mortality and density-dependant trade-offs of size and biomass for survival. Under field conditions C. macrocephalum had a broader ecological niche than E. curvula, invading hygrophilous and undisturbed grasslands not amenable for E. curvula establishment, this included well drained disturbed soils on which the latter proliferated. Evidence of competitive exclusion of E. curvula by C. macrocephalum or vice versa was not detected. The coexistence of both species irrespective of relative density suggested these species have different resource requirements. Allelopathy was not an adequate causal mechanism to explain invasiveness in Campuloclinium macrocephalum. A more traditional hypothesis such as the absence of natural enemies, at this stage, better justifies the weed’s invasion success.  相似文献   

7.
Invasive alien plants are of concern in South Africa. Pompom weed (Campuloclinium macrocephalum) is currently invading the Grassland and Savannah biomes of South Africa and is likely to continue spreading in the southern African sub- region. Two possible biological control agents (Liothrips tractabilis and Cochylis campuloclinium) have been identified for control of pompom weed. We used ecological niche modelling to predict which areas in southern Africa are likely to be suitable for pompom weed and the two potential biological control agents. The overlap between areas predicted to be highly suitable for pompom weed and areas suitable for the biological control agents was assessed. Methods of reducing sampling bias in a data set used for calibrating models were also compared. Finally, the performance of models calibrated using only native range data, only invaded range data and both were also compared. Models indicate that pompom weed is likely to spread across a greater region of southern Africa than it currently occupies, with the Savannah and Grassland biomes being at greatest risk of invasion. Poor overlap was found between the areas predicted to be highly suitable for pompom weed and those areas predicted to be suitable for the biological control agents. However, models of the potential distribution of the biological control agents are interpreted with caution due to the very small sample size of the data set used to calibrate the models. Models calibrated using both native range and invaded range data were found to perform best whilst models calibrated using only native range data performed the worst. There was little difference found between models that were calibrated using spatially reduced (selecting only one record per 30 min grid cell) and randomly reduced (randomly selecting 50% of available records) biased data sets.  相似文献   

8.
Broad-leaved dock (Rumex obtusifolius L., Polygonaceae) is an agronomically important perennial weed causing decreases in pasture yields and fodder quality. Non-chemical control measures for dock are often limited to frequent pulling and cutting, additionally it is usually avoided by grazing animals. Here, the regeneration of R. obtusifolius in a Rumex-infested grassland grazed by a sheep breed that explicitly feeds on dock (Ovis aries L. cv. East Prussian Skudden) was compared to cutting. Therefore, regeneration of 90 R. obtusifolius plants of three different size classes was monitored in three plots during three grazing and cutting cycles. Plant height and number of fruit-stands of regrown R. obtusifolius was significantly lower, number of leaves significantly higher after grazing than after cutting, while plant diameter was unaffected. Initially medium and large-sized plants (>40 cm diameter) were significantly more sensitive to grazing or cutting than initially smaller sized plants. Soil nitrate and ammonium concentrations in the vicinity of R. obtusifolius correlated with some regrowth parameters but were not affected by grazing or cutting. Sheep-grazed grassland communities comprised fewer legumes (p = 0.002), more grasses (p = 0.010) and fewer sward gaps (p = 0.025) than cut grassland. At the end of the experiment, abundance of R. obtusifolius in sheep grazed plots was lower than in cut plots (p = 0.089) suggesting that regrowth potential of this weed was depleted by continuous grazing and higher sward density. In conclusion, these data suggest that sheep could be considered in grassland management schemes to both directly and indirectly control Rumex infestations.  相似文献   

9.
Stemphylium leaf blight caused by Stemphylium vesicarium and onion thrips (Thrips tabaci) are two common causes of leaf damage in onion production. Onion thrips is known to interact synergistically with pathogens to exacerbate plant disease. However, the potential relationship between onion thrips and Stemphylium leaf blight is unknown. In a series of controlled laboratory and field trials, the relationship between thrips feeding and movement on the development and severity of Stemphylium leaf blight were examined. In laboratory assays, onions (“Avalon” and “Ailsa Craig”) with varying levels of thrips feeding damage were inoculated with S. vesicarium. Pathogen colonisation and leaf dieback were measured after 2 weeks. In pathogen transfer assays, thrips were exposed to S. vesicarium conidia, transferred to onion and leaf disease development was monitored. In field trials, insecticide use was examined as a potential indirect means to reduce Stemphylium leaf blight disease and pathogen colonisation by reducing thrips damage. Results from laboratory trials revealed that a reduction in thrips feeding decreased S. vesicarium colonisation of onion leaves by 2.3–2.9 times, and decreased leaf dieback by 40–50%. Additionally, onion thrips were capable of transferring S. vesicarium conidia to onion plants (albeit at a low frequency of 2–14% of plants inoculated). In field trials, the symptoms and colonisation of Stemphylium leaf blight were reduced by 27 and 17%, respectively with the use of insecticide to control thrips. These results suggest that onion thrips may play a significant role in the development of Stemphylium leaf blight, and thrips control may reduce disease in commercial onion fields.  相似文献   

10.
The predatory mite Neoseiulus cucumeris (Oudemans) (Acarina: Phytoseiidae) successfully controlled the broad mite Polyphagotarsonemus latus (Banks) (Acarina: Tarsonemidae) on two varieties of greenhouse-grown sweet peppers (Capsicum annuum L.). A survey of pre-plant seedlings showed that nurseries were a source of infestation for the broad mite. The predatory mites were released twice (on day 1 and 5, or 15 days later) on each plant, every second plant or every fourth plant. Broad mite populations were evaluated by sampling young leaves from the top of the plant. The effect of the broad mite on plant height, dry mass and yield was evaluated. Additionally, since N. cucumeris is known to control thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), blue sticky traps and flower sampling were used to evaluate changes in thrips populations. All three release rates of N. cucumeris significantly (P<0.05) controlled broad mite populations, but when the predatory mites were released only on every fourth plant, the overall height and yield of the plants were adversely affected by broad mites. Releasing N. cucumeris on each or every second plant was as efficacious in controlling broad mites as sulfur treatments in terms of plant height, dry mass and yield. Plants treated with sulfur, however, had significantly higher thrips populations and fruit damage.  相似文献   

11.
The leaf-mining fly Calycomyza eupatorivora Spencer (Diptera: Agromyzidae) has become widely established in the eastern regions of South Africa, following its release for the biological control of the invasive shrub Chromolaena odorata (L.) King and Robinson. This study was conducted to gain some insight into the impact of C. eupatorivora populations, by assessing their seasonal activity, habitat preferences, levels of leaf exploitation and extent of larval mortality in the field over a 1-year period. Leaf mining intensity was poorly synchronised with leaf availability, with leaf exploitation peaking at the end of the growing season of C. odorata. Although significantly more mines were recovered on plants growing in shaded situations, the percentage of available leaves that were exploited for mining was not significantly different between plants growing in shaded versus open situations. Overall, the levels of leaf damage were trivial with mines recovered from <5% of available leaves that were sampled during the study. Besides leaf-quality requirements, these low levels of leaf exploitation may have been influenced by high larval mortality which varied between 60 and 83%, depending on whether lower or higher estimates were used. These evaluations have verified the results of earlier laboratory studies which suggested that the impact of C. eupatorivora on mature populations of C. odorata in South Africa will be negligible.  相似文献   

12.
Solidago canadensis L. is a major invasive weed that is highly tolerant to disturbances and difficult to control in China. In order to develop a rapid non-chemical control strategy for this weed in heterogeneous environments, we investigated different treatments including mechanical control (cutting and hoeing) and inoculation with an indigenous pathogen, Sclerotium rolfsii SC64, which was isolated from S. canadensis and applied by means of a solid formulation. Greenhouse and field trials were conducted to test how the control regimes (i.e. individual treatment methods, combination of these methods and different treatment timing) influence control efficiency. The fungal isolate S. rolfsii SC64 caused 70% plant mortality and fresh weight reduction of S. canadensis under 150 cm growth stage, and efficacy increased to 80% when the above-ground material was removed. However, the use of cutting, hoeing or treating with S. rolfsii SC64, on its own, did not provide sufficient control of S. canadensis. Cutting treatments performed in July and September only eliminated sexual reproduction of S. canadensis. Combination of cutting, hoeing and treating with isolate SC64 during the growing season in May, July and September was able to kill more than 90% of the ramets. This combination of methods not only eliminated sexual reproduction of S. canadensis, but also destroyed its underground stems and prevented its regrowth. Therefore, this integrated approach may provide an optima control strategy for S. canadensis.  相似文献   

13.
South African citrus thrips (Scirtothrips aurantii) established adventitiously in Australia. Although it is a major horticultural pest in Africa, it is now advocated as a possible biological control agent against Bryophyllum delagoense Eckl. & Zeyh. (Crassulaceae). To evaluate the biocontrol potential of S. aurantii a two year field study was conducted on the western Darling Downs of southern Queensland. Imidacloprid insecticide was applied to two quadrats at each of 18 field sites to assess, in the absence of S. aurantii, the persistence of individual plants and to quantify propagule production and recruitment by this declared weed. A third quadrat was left, as a control, to be infested naturally by S. aurantii. When released from herbivory by thrips in the field, plants grew significantly more, flowered more, and were significantly more fecund than plants in the quadrats with S. aurantii. Increases in growth and fecundity translated into significantly increased plant numbers but not increased recruitment. Recruitment even declined in experimental quadrats, through the indirect effects of releasing plants from herbivory. Field sampling also revealed that S. aurantii may be sensitive to seasonal climatic fluctuations. These and other local climatic influences may limit the biological control potential of the insect.  相似文献   

14.
Western flower thrips (WFTs), Frankliniella occidentalis Pergrande, and onion thrips (OTs), Thrips tabaci Lindeman, are two cosmopolitan insect pests of agricultural and horticultural plants. Understanding the occurrence and development of thrips on plants is crucial for identifying suitable plants that can be used for developing a “push-pull” strategy against thrips. In this study, the dynamics of WFTs and OTs on plants (Allium fistulosum L., Medicago sativa L., Luffa cylindrica (L.) Roem., Ocimum basilicum L., and Schizonepeta tenuifolia (Benth.) Briq.) were investigated for two consecutive years (2018–2019). Throughout the survey, the abundances of both thrips species were strongly associated with plant species and plant phenology; both thrips species were present at relatively high densities on M. sativa but very low densities on O. basilicum and S. tenuifolia. Populations of both thrips species greatly increased during plant flowering. A Y-tube olfactory test was used to study the effects of plant volatiles in mediating thrips behaviour and showed that volatiles of M. sativa were attractive to both thrips species whether emitted by the plant in the vegetative or flowering stage, while volatiles of O. basilicum and S. tenuifolia were repellent to thrips. Additionally, because of the presence of a high number of floral chemicals, both thrips species exhibited a greater preference for volatiles emitted by plants in the flowering period over those emitted by plants in the vegetative period. Our observations indicate that plant species and flowering status play an important role in the abundance dynamics of thrips and that the volatiles of flowering plants attract thrips more strongly than volatiles emitted by vegetative plants. These findings can facilitate the screening of attractive/unattractive plants for developing push-pull strategies to control thrips.  相似文献   

15.
The effects of different isolates of the tomato spotted wilt tospovirus (TSWV), host plants, and temperatures on Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), the most important vector of TSWV in North Carolina, were measured in the laboratory. Thrips were reared at either 18.3, 23.9, or 29.4 °C until adult eclosion on excised leaves of Datura stramonium L. or Emilia sonchifolia (L.). Plants were either infected with the TSWV isolates CFL or RG2, or left uninfected (control). The results revealed a positive relationship between larval survival and temperature, regardless of host plant or TSWV isolate. Both survival to adult and percentage transmission of TSWV by F. fusca were significantly affected by the interaction between host plant and TSWV isolate. The consequence of this interaction was that the cohort‐based percentage transmission from infected E. sonchifolia plants for CFL was 1.3‐fold greater than that of RG2, whereas the percentage transmission from infected D. stramonium plants for RG2 was twice that of CFL. Both host plant and TSWV isolates showed significant effects on thrips development time to adult and head capsule width of adult thrips, as well as on the incidence of thrips infection with TSWV. The infection status of these thrips was determined by ELISA for the NSs viral protein. Infected thrips reared on infected host foliage took longer to develop to adult and were smaller than non‐infected thrips which had also been reared on infected host foliage, demonstrating a direct effect of the TSWV on thrips. However, non‐infected thrips reared on non‐infected leaves took longer to develop than non‐infected thrips reared on infected leaves, suggesting an effect of the plant tissue on thrips. In addition, adult thrips reared on TSWV‐infected D. stramonium at 29.4 °C developed smaller head capsules than thrips developing on infected foliage at lower temperatures and on non‐infected leaves of D. stramonium or E. sonchifolia. Both TSWV isolates and host plants differentially affected females more than males. In conclusion, both the infection of thrips by TSWV and TSWV‐mediated changes in host plant quality were found to have significant biological effects on F. fusca.  相似文献   

16.

Aim

We investigated the invasion history of Lycium ferocissimum, a spine-covered shrub native to South Africa that was introduced to Australia in the mid-1800s, and has since developed into a damaging invasive plant of undisturbed landscapes and pastures. In addition to identifying the provenance of the Australian plants, we tested for evidence of admixture, and contrasted genetic diversity and structuring across the native and introduced ranges.

Location

Samples were collected across South Africa (24 localities) and Australia (26 localities).

Methods

We used genotyping-by-sequencing (3117 SNPs across 381 individuals) to assess population genetic structuring in L. ferocissimum across Australia and South Africa. Coalescent analyses were used to explicitly test contrasting invasion scenarios.

Results

Clear geographic genetic structuring was detected across South Africa, with distinct clusters in the Eastern and Western Cape provinces. The L. ferocissimum plants in Australia form their own genetic cluster, with a similar level of genetic diversity as plants in South Africa. Coalescent analyses demonstrated that the lineage in Australia was formed by admixture between Eastern Cape and Western Cape plants, with most of the genetic material from the Australian lineage originating from the Western Cape. Our analyses suggest that L. ferocissimum plants were originally introduced to South Australia, though it is unclear whether admixture occurred before or after its introduction to Australia. We detected little evidence of geographic genetic structure across Australia, although many of the populations were genetically distinct from one another.

Main Conclusions

Our results illustrate how admixture can result in genetically diverse and distinct invasive populations. The complex invasion history of L. ferocissimum in Australia poses particular challenges for biological control. We suggest potential biological control agents should be screened against admixed plants (in addition to plants from the Eastern and Western Cape) to test whether they provide effective control of the genetically distinct invasive lineage.  相似文献   

17.
H.E. Williams 《BioControl》2004,49(2):211-223
The host range of the tortoise beetle,Charidotis pygmaea Klug (Coleoptera:Chrysomelidae), was studied under quarantinelaboratory conditions to evaluate the insect'ssuitability for release as a biological controlagent for the noxious weed, Lantanacamara L. (Verbenaceae) in South Africa.Culturing on the target plant, L. camara,proved problematic with high larvalmortalities. Host-specificity studies showedthat four species in the genus Lantana,and two species in the genus Lippiawere acceptable as host plants. Duringlarval development trials, the insect performedbetter on the indigenous Lantana rugosaThunb. (Verbenaceae) and the introduced,commercially used L. montevidensis(Spreng.) Briq. (Verbenaceae), than on any ofthe weedy South African L. camaravarieties tested. Adult multi-choice trialsindicated that the beetle preferred to ovipositon L. rugosa and L. montevidensis.It is therefore recommended that C.pygmaea not be released against L.camara in Africa.  相似文献   

18.
M. H. Rahman  S. Saiga 《Plant and Soil》2005,272(1-2):163-171
Neotyphodium coenophialuminteracts mutualistically with its host grasses. Tall fescue (Festuca arundinacea Schreb.) plants infected by the fungal endophyte,Neotyphodium coenophialum(Morgan-Jones and Gams) Glenn, Bacon and Hanlin, often perform better than non-infected plants, especially in limited resource environments. However, there is a scarcity of information about endophyte-grass ecotypes interaction in Andisols of temperate regions. Clones of three tall fescue ecotypes (Fukaura, Koiwai and Showa) either infected with N. coenophialum (E+) or noninfected (E–) were grown in Andisols (Black Andisol: naturally low content of phosphorus, high in other nutrients; Red Andisol: naturally high content of phosphorus, low in other nutrients) for 133 days in a controlled environment. Cumulative shoot dry weight, daily regrowth rates (tiller number, plant height and shoot dry matter) after clippings and nutrient uptake, transport and efficiency ratios were measured. In Black Andisol, E+ plants had significantly higher cumulative shoot dry weight as well as daily regrowth rates than E– plants, while in Red Andisol the reverse was true. Among the ecotypes studied, Showa had the highest shoot growth. Significantly higher phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) uptake as well as transport were identified in E+ vs. E– plants grown in Black Andisol. With few exceptions, values for nutrient efficiency ratios were not significantly different between E+ and E– plants grown in both soils. Significant three-way interaction (endophyte × ecotype × soil) for cumulative shoot dry weight and regrowth rate revealed that the ecotype specific regrowth responses to endophyte infection were depended on soil nutrient conditions. Vegetative growth and nutrient acquisition in tall fescue varied with ecotype and were modified by abiotic (soil fertility status) as well as biotic (endophyte infection) factors.  相似文献   

19.
In coastal areas of Australia, there are extensive infestations of the environmental weed Chrysanthemoides monilifera ssp. rotundata (bitou bush). This study looked at the impact of long-term infestations on the abundance and assemblage composition of leaf litter invertebrates. Assemblages were compared in weed infested and native shrublands along the New South Wales coastline over 12 months. The total abundance was not significantly reduced in the weedy habitat but the abundance of mites, thrips, spiders, ants, and centipedes was reduced at many sites. The invertebrate assemblages also differed between habitats, with the C. monilifera supporting a lower diversity of beetles. However, the millipedes, amphipods, earthworms, pseudoscorpions and isopods appeared to respond positively to the invasion, occurring in higher abundance and detected more frequently in the weedy areas. This has been partially attributed to a change in microclimate within the C. monilifera infestations. It is generally moister and darker, which these invertebrates tend to prefer. Secondly, C. monilifera produces less leaf litter of higher quality, and possibly higher palatability than the native sclerophyllous vegetation, which may encourage species that consume litter.  相似文献   

20.
Chlorosis induced with a supraoptimum dose of phosphorus in nutrient solution (69 mg P l-1) was reverted by spraying of leaves of chlorotio maize plants (Zea mays L.) with FeEDTA. Biomass formation, chlorophyll and iron content were decreased in the above-ground parts of plants grown under chlorosis-inducing conditions. Spraying always decreased content of inorganic phosphorus (Pi/Fe ratio was significantly changed), increased chlorophyll content in old plants and stimulated dry mass formation at supraoptimum phosphorus doses. FeEDTA application improved phosphate utilization (portion of phosphate in organic bonds was increased). This may be the basis of chlorosis-reverting effect of FeEDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号