首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Paper by Hussein et al. “Effectiveness of the entomopathogenic nematode Steinernema feltiae in agar gel formulations against larvae of the Colarado potato beetle, Leptinotarsa decemlineata (Say.) (Coleoptera: Chrysomelidae)” in Volume 7, Issue 1, 77–82 9 / February 2012; DOI: 10.2478/s11535-011-0090-0 contains an error in the title. The correct title is presented below.  相似文献   

2.
To determine the LC50 values of two entomopathogenic nematodes against Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) prepupae, different concentrations of the nematodes were tested in soil. Because of the different temperature requirements of the two nematode species, bioassay experiments were conducted at 20 ± 1°C and 27 ± 2°C for Steinernema feltiae Filipjev (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), respectively. Both the isolates were effective against L. decemlineata. LC50 values of H. bacteriophora against progeny of field-collected adults and laboratory-reared adults were estimated as 8.5 and 7.6 IJ per prepupa, respectively. For S. feltiae the value was calculated as 51.2 IJ per prepupa against offspring of laboratory-reared adults of L. decemlineata only. Cellular encapsulation of both nematode species was observed. Sublethal nematode concentrations caused wing deformation and delayed metamorphosis which may affect Colorado potato beetle adult fitness.  相似文献   

3.
Abstract 1 Seven organically grown cabbage fields were surveyed for entomopathogenic nematodes in the autumn by baiting. Nematodes were obtained from three fields with bait larvae infection ranging from 1.3–4.0%. 2 Inoculation of Steinernema feltiae (Rhabditida: Steinernematidae) in the spring increased bait larvae infection to 16.0–32.0%. 3 Four different species were found (Steinernema affine, Steinernema bicornutum, S. feltiae and Steinernema C1). 4 The number of Delia radicum (L.) (Diptera: Anthomyiidae) puparia was significantly reduced at plants where S. feltiae had been inoculated. 5 Delia radicum parasitoids were also affected by S. feltiae. The results indicated that Aleochara species (Coleoptera: Staphylinidae) were more negatively affected than Trypliographa rapae (Westw.) (Hymenoptera: Cynipidae).  相似文献   

4.
Mortality of larval, pupal, and adult western cherry fruit fly, Rhagoletis indifferens (Tephritidae) exposed to the steinernematid nematodes Steinernema carpocapsae, Steinernema feltiae, and Steinernema intermedium, was determined in the laboratory and field. Larvae were the most susceptible stage, with mortality in the three nematode treatments ranging from 62 to 100%. S. carpocapsae and S. feltiae were equally effective against larvae at both 50 and 100 infective juveniles (IJs)/cm2. S. intermedium was slightly less effective against larvae than the other two species. Mortalities of R. indifferens larvae at 0, 2, 4, and 6 days following their introduction into soil previously treated with S. carpocapsae and S. feltiae at 50 IJs/cm2 were 78.6, 92.5, 95.0, and 77.5% and 87.5, 52.5, 92.5, and 70.0%, respectively, and at 100 IJs/cm2 were 90.0, 92.0, 100.0, and 84.0% and 90.0, 50.0, 42.0, and 40.0%, respectively. There was no decline in mortality caused by S. carpocapsae as time progressed, whereas there was in one test with S. feltiae. Larval mortalities caused by the two species were the same in a 1:1:1 vermiculite:peat moss:sand soil mix and a more compact silt loam soil. In the field, S. carpocapsae and S. feltiae were equally effective against larvae. Pupae were not infected, but adult flies were infected by all three nematode species in the laboratory. S. carpocapsae was the most effective species at a concentration of 100 IJs/cm2 and infected 11–53% of adults that emerged. The high pathogenicity of S. carpocapsae and S. feltiae against R. indifferens larvae and their persistence in soil as well as efficacy in different soil types indicate both nematodes hold promise as effective biological control agents of flies in isolated and abandoned lots or in yards of homeowners.  相似文献   

5.
Field experiments were conducted in turf maintained under golf course fairway conditions in May, June, and August 2009 and in August and September 2010 to evaluate the ability of entomopathogenic nematodes to control larval populations of the black cutworm, Agrotis ipsilon, on golf courses. Commercial products containing the entomopathogenic nematodes Heterorhabditis bacteriophora, Steinernema carpocapsae, S. feltiae, and S. riobrave were applied at 1.0 or 2.5×109 infective juveniles per ha against fourth-instar black cutworms. Larval mortality and turf damage were evaluated at 4 and/or 7 days after treatment (DAT). Steinernema carpocapsae was the best performing species due to a combination of high control rates (average 83%), most consistent results (70–90% range), high speed of kill (average 68% at 4 DAT), and prevention of significant turf damage despite very high larval densities at 0 DAT. Efficacy of S. feltiae and H. bacteriophora was often similar to that of S. carpocapsae but overall less consistent. Short-term persistence of the nematodes was evaluated in four turfgrass sites maintained under golf course putting green, fairway, or rough conditions in June and August 2009 by baiting soil samples at 0, 4, 7, and 14 DAT. Relative to recovery immediately after application, at least 50% of S. feltiae and 25% of S. carpocapsae consistently persisted up to 4 days in one of the greens and up to 7 days in some trials. Our finding suggests that S. carpocapsae and S. feltiae may provide adequate black cutworm control in golf course turf under moderate summer temperatures.  相似文献   

6.
The shore fly, Scatella stagnalis (Fallén) (Diptera: Ephydridae) is an important insect pest of greenhouse crops. We evaluated two different Spanish isolates of entomopathogenic nematodes, Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) and Steinernema arenarium (Artyukhovsky) (Rhabditida: Steinernematidae), and two commercially available strains, Steinernema feltiae (Nemaplus®) and Heterorhabditis bacteriophora (Poinar) (Rhabditida: Heterorhabditidae) (Nematop®) against shore flies. In tests conducted in 24-well plate filter paper applied at 5, 11, 22, 44 and 88 nematodes per larva, all nematodes produced significant shore fly larval mortality. The lowest concentration tested was enough to obtain high larval mortality (65.2–87.0%). The nematodes Steinernema feltiae and Steinernema arenarium, which parasitized the shore fly larvae faster, also penetrated in higher number in the shore fly larva (4.6–8.8% penetration rate). In bioassays conducted in algae, Steinernema feltiae, applied at 50 nematodes/cm2, caused highest (100%) and Steinernema arenarium lowest shore fly mortality (94%). Our results suggest that entomopathogenic nematodes appear feasible for controlling shore flies but further tests are needed to determine their efficacy in the field.  相似文献   

7.
In laboratory and greenhouse studies, the invading ability, virulence, and mortality caused by Stinernema feltiae and Heterorhabditis bacteriophora were compared. After one and two days of exposure to either nematode species, the mortality of Colordo potato beetle (CPB) Leptinotarsa decemlineata larvae at different instars, third and fourth, was recorded and the number of nematodes invading cadavers was more than the number of nematodes inside the larvae at the late last instar (one day before pre-pupa). Two concentrations, 250 and 500 IJs/dish, infective juvenile nematodes/0.5 ml were tested on different CPB larval instar. S. feltiae was more effective, with fourth instar rather than third and late last instar. On the other hand, H. bacteriophora showed a very weak effect with L. decemlineata. Also it was clear that S. feltiae was more effective and faster than H. bacteriophora: more than 70% of larvae were killed within 24 hours compared with H. bacteriophora which killed 40% of larvae within 48–72 hours. A significant difference in invading efficiency was observed with concentration 2500 IJs/pot in the greenhouse test. The number of adult females found in the cadavers of L. decemlineata larvae was always higher than the number of males. Foliage application of S. feltiae and H. bacteriophora resulted in a significant reduction of the number of damaged leaves and a lower index of damage compared with that in the control. We conclude that S. feltiae has significant potential and can help in the management of the Colorado potato beetle.  相似文献   

8.
Pathogenicity of a native isolate of Steinernema feltiae (H1) and two exotic strains, Heterorhabditis bacteriophora and Steinernema carpocapsae was assessed under laboratory conditions using different concentrations i.e. 4000, 6000, 8000 and 10,000 infective juveniles/ml against second instar larvae, prepupa and pupa of Thrips tabaci Lindeman. The mortality data were recorded 24 and 48?h post-inoculation. The highest mortality rate was recorded for prepupa (62%) than second instar (12.5%) by H. bacteriophora and S. carpocapsae, respectively, 24?h after treatment. No significant differences were found in mortality between prepupa and pupa with increasing the nematodes concentrations (from 4000 to 10,000 nematode/ml) but increasing nematode concentrations increased the mortality of second instar. At the end of the experiment (48?h.), S. feltiae H1 caused the highest mortality on second instar larvae (74%), whereas all other species caused 80–83% mortalities on pupa. This study suggests that native isolate of S. feltiae (H1) had high potential to infect soil-dwelling stages of T. tabaci.  相似文献   

9.
Abstract

Biocontrol potential of the entomopathogenic nematodes (EPNs) on the second-instar larvae of the non-target insect predators, Coccinella septumpunctata and Chrysoperla carnea as compared to Spodoptera littoralis (Boisd.) was evaluated. The pathogenicity of EPNs, namely, Heterorhabditis bacteriophora, Steinernema feltiae and Steinernema carpocapsae at concentrations 100, 200, 400, 800 and 1600 IJs/cup) were tested at 2, 4 and 6 days’ post-inoculation. Laboratory results showed significant differences among the mortality rates of different tested larvae, for each concentration at different time intervals. H. bacteriophora induced the highest mortality followed by S. carpocapsae treatment. However, S. feltiae was found to be more safety on predators as it causes less mortality at 6 days of treatment. The values of half lethal concentrations (LC50) were 614.06, 3797.43 and 676.47 IJs/cup for C. Carnea and 390.60, 1209.88 and 503.65 IJs/cup for C. septumpunctata treated by H. bacteriophora, S. feltiae and S. carpocapsae, respectively. In semi-field experiments, there were non-significant differences among mortality of each predator indicated at concentrations of the different EPNs after 2 days or 6 days’ post-inoculation. The study revealed a lethal pathogenic effect of EPNs against insect pests but caused low mortality on the non-target ones.  相似文献   

10.
In laboratory tests, larvae of the Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), and the sugarbeet wireworm (SBW), Limonius californicus (Mannerheim), were exposed to the nematodes Steinernema feltiae Filipjev (Mexican strain) (= Neoaplectana carpocapsae) and S. glaseri Steiner in soil. S. feltiae caused significantly higher mortality in SBW larvae than did S. glaseri, but both nematode species were equally effective against CPB larvae. The minimum concentration of S. feltiae for 100% mortality of CPB larvae after 13 days was 157 nematodes/cm² of soil, and the LC₅₀ based on 6-day mortality was 47.5 nematodes/cm²; in contrast, 100% mortality of SBW larvae was not achieved with even the highest concentration tested, 393 nematodes/cm². CPB adults emerging from nematode-contaminated soil were not infected. In field cage tests, S. feltiae applied to the soil surface at the rates of 155 and 310 nematodes/cm² soil caused 59% and 71% mortality, respectively, of late-fourth-instar spring-generation CPB, and 28% and 29% mortality, respectively, of SBW. No infection was obtained when larvae of summer generation CPB and SBW were placed in the same cages approximately 6 weeks after nematodes were applied to the soil. Inundative soil applications of S. feltiae, though cost prohibitive at present, were effective in reducing caged CPB and SBW field populations.  相似文献   

11.
The entomopathogenic nematode Steinernema feltiae strain Ustinov Russia was used on potato foliage to control larvae of the Colorado potato beetle, Leptinotarsa decemlineata (Say.) (Coleoptera: Chrysomelidae). Nematodes were applied in formulations of agar at 4%, 2%, 1% and 0.5% concentrations and compared to a control application of nematodes in water for nematode survival. Agar formulation significantly improved efficacy by increasing nematode survival through reduction in desiccation when compared to water-based formulation. More than 70% of infective juvenile nematodes (IJs) died after being incubated in the highest concentration of agar for 12 h, while only 8% mortality was recorded at the 1% concentration. Suspension of nematodes in 1% agar gel was shown to be efficacious in both laboratory and greenhouse tests for extension of the nematodes’ survival. Agar formulation droplets dried slower than control droplets by 127.8 min. Leptinotarsa decemlineata mortality significantly increased when insects were exposed to infective juvenile nematodes for four hours after application. In conclusion, the agar formulation enhanced nematode survival by providing a suitable environment thereby delaying dryingand increasing the possibility for nematodes to invade their host on the foliage.  相似文献   

12.
Stacked wooden fruit bins are frequent overwintering sites for overwintering diapausing codling moth larvae. Control strategies against the codling moth (Cydia pomonella) (Lepidoptera: Tortricidae) in South Africa have been hampered by the reinfestation of orchards from nearby stacked infested fruit bins and by the movement of infested bins between orchards. Worldwide, wooden fruit bins are systematically being replaced with plastic bins, however in South Africa this will not be accomplished in the near future. The objective of this study was to evaluate the potential of two recycled commercially available entomopathogenic nematode (EPN) species, Heterorhabditis bacteriophora and Steinernema feltiae, as well as of a local species, Steinernema yirgalemense, to disinfest miniature wooden fruit bins under controlled conditions in the laboratory. After dipping miniature bins loaded with codling moth larvae in a suspension of 25?IJs/mL of each of the three EPN species, under optimum conditions of temperature and humidity, the highest percentage of control was obtained using S. feltiae (75%). The addition of adjuvants significantly increased S. feltiae infectivity to >95%, whereas it did not result in a significant increase in H. bacteriophora or S. yirgalemense infectivity.  相似文献   

13.
Three strains of Steinernema feltiae Filipjev (All, Mexican, and Breton strains) and one of Heterorhabditis heliothidis (Khan, Brooks, and Hirschmann) were evaluated for their potential to control Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), larvae and pupae in the soil. In laboratory studies, H. heliothidis and S. feltiae (Mexican strain) produced the highest mortality (6 days posttreatment) of CPB when applied to the surface of a soil column containing mature CPB larvae 5 cm below. Mortality ranged from 80 to 90% at rates of 79-158 nematodes/cm². Similar results were seen in a field microplot study with all four nematodes; S. feltiae (Mexican strain) and H. heliothidis were most effective. Adult CPB emergence was reduced 86.5-100% after application of 31-93 H. heliothidis/cm² and 88.4-100% with 93-155 S. feltiae (Mexican strain)/cm². The All strain of S. feltiae was moderately effective (ca. 80% reduction at 93-155 nematodes/cm²), while the Breton strain was ineffective (< 40% reduction at 155 nematodes/cm²). In small plots of potatoes enclosed in field cages, application of H. heliothidis and S. feltiae (Mexican strain) at rates of 93-155 nematodes/cm² before larval CPB burial in the soil resulted in 66-77% reduction in adult CPB emergence. Soil applications of these nematodes show potential for biological control of CPB.  相似文献   

14.
Plum sawflies are among the most damaging pests of European plum. Current control strategy implies insecticide application. Three species of entomopathogenic nematodes (EPN), Steinernema feltiae Filipjev, S. carpocapsae Weiser and Heterorhabditis bacteriophora Poinar were tested under laboratory and field conditions to assess effectiveness against larval and adult stages. Laboratory tests resulted in up to 100% mortality of last instar larvae before construction of a cocoon. However, the nematodes were not able to penetrate the cocoon. Foliar application did not result in plum sawflies larvae infestation by EPNs. Under field conditions, the nematodes reduced the number of emerging adults by application against sawfly larvae in the previous year before migration into the soil for overwintering by 62%–92%. Application of the nematodes against adults just before their anticipated emergence resulted in reduction of fruit infestation up to 100%. Mean results of 5 trials using caged trees were 47.8% with S. feltiae, 56.3% with S. carpocapsae and 62.9% with H. bacteriophora. In open field trails, control of adults obtained with S. feltiae at 0.5 million nematodes/m2 was 98.2 and 67.8% and at 0.25 million m−2 41.7 and 41.2%. Forecasting adult emergence and optimal soil moisture conditions are essential for success of the nematode application.  相似文献   

15.
Predation of the entomopathogenic nematode, Steinernema feltiae (Rhabditida: Steinernematidae), by Sancassania sp. (Acari: Acaridae) isolated from field-collected scarab larvae was examined under laboratory conditions. Adult female mites consumed more than 80% of the infective juvenile (IJ) stage of S. feltiae within 24 h. When S. feltiae IJs were exposed to the mites for 24 h and then exposed to Galleria mellonella (Lepidoptera: Pyralidae) larvae, the number of nematodes penetrating into the larvae was significantly lower compared to S. feltiae IJs that were not exposed to mites (control). Soil type significantly affected the predation rate of IJs by the mites. Mites preyed more on nematodes in sandy soil than in loamy soil. We also observed that the mites consumed more S. feltiae IJs than Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). No phoretic relationship was observed between mites and nematodes and the nematodes did not infect the mites.  相似文献   

16.
Infectivity of six entomopathogenic nematode (EPNs) species against Bactrocera oleae was compared. Similar infection levels were observed when third-instar larvae were exposed to infective juveniles (IJs) on a sand-potting soil substrate. When IJs were sprayed over naturally infested fallen olives, many larvae died within treated olives as well as in the soil; Steinernema feltiae caused the highest overall mortality of 67.9%. In addition, three laboratory experiments were conducted to optimize a time period for S. feltiae field application. (1) Abundance of fly larvae inside fallen olives was estimated over the 2006–2007 season with the highest number of susceptible larvae (3 mm and larger) per 100 olives being observed during December, 2006. (2) S. feltiae efficacy against fly larvae dropped to the soil post-IJ-application was determined. B. oleae added to the substrate before and after nematode application were infected at similar levels. (3) Effect of three temperature regimes (min–max: 10–27, 6–18, and 3–12 °C) corresponding to October through December in Davis, California on S. feltiae survival and infectivity was determined. After 8 weeks, the IJs at the 3–12 °C treatment showed the highest survival rate. However, the cold temperature significantly limited S. feltiae infectivity. Our results demonstrate that B. oleae mature larvae are susceptible to EPN infection both in the soil and within infested olives. Being the most effective species, S. feltiae may have the potential to suppress overwintering populations of B. oleae. We suggest that November is the optimal time for S. feltiae field application in Northern California.  相似文献   

17.
Two species of entomophilic nematodes, Heterorhabditis heliothidis (NZ strain) and Steinernema feltiae (Agriotos strain) were tested in the laboratory against immature and adult stages of a strain (G) of Musca domestica with multiple insecticide-resistance. Both species of nematodes killed larval stages of M. domestica on inoculated filter papers. S. feltiae was the most virulent parasite, and killed >90% of all larval stages at the two highest doses of 25 000 and 50 000 nematodes per 0·5 ml tap water. No puparia were parasitised by either species. There was no parasitism of the larval stages after exposure to chicken manure treated with nematodes. All adult flies were parasitised after they were exposed to bait-pads previously inoculated with S. feltiae, 93.3% were parasitised by H. heliothidis.  相似文献   

18.
In this study, we evaluated the effect of entomopathogenic nematodes (EPNs) Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora, symbiotically associated with bacteria of the genera Xenorhabdus or Photorhabdus, on the survival of eight terrestrial isopod species. The EPN species S. carpocapsae and H. bacteriophora reduced the survival of six isopod species while S. feltiae reduced survival for two species. Two terrestrial isopod species tested (Armadillidium vulgare and Armadillo officinalis) were found not to be affected by treatment with EPNs while the six other isopod species showed survival reduction with at least one EPN species. By using aposymbiotic S. carpocapsae (i.e. without Xenorhabdus symbionts), we showed that nematodes can be isopod pathogens on their own. Nevertheless, symbiotic nematodes were more pathogenic for isopods than aposymbiotic ones showing that bacteria acted synergistically with their nematodes to kill isopods. By direct injection of entomopathogenic bacteria into isopod hemolymph, we showed that bacteria had a pathogenic effect on terrestrial isopods even if they appeared unable to multiply within isopod hemolymphs. A developmental study of EPNs in isopods showed that two of them (S. carpocapsae and H. bacteriophora) were able to develop while S. feltiae could not. No EPN species were able to produce offspring emerging from isopods. We conclude that EPN and their bacteria can be pathogens for terrestrial isopods but that such hosts represent a reproductive dead-end for them. Thus, terrestrial isopods appear not to be alternative hosts for EPN populations maintained in the absence of insects.  相似文献   

19.
The effect of five commercial potting media, peat, bark, coir, and peat blended with 10% and 20% compost green waste (CGW) on the virulence of six commercially available entomopathogenic nematodes (EPN), Heterorhabditis bacteriophora UWS1, Heterorhabditis megidis, Heterorhabditis downesi, Steinernema feltiae, Steinernema carpocapsae, and Steinernema kraussei was tested against third-instar black vine weevil (BVW), Otiorhynchus sulcatus. Media type was shown to significantly affect EPN virulence. Heterorhabditis species caused 100% larval mortality in all media whereas Steinernema species caused 100% larval mortality only in the peat blended with 20% CGW. A later experiment investigated the effect of potting media on the virulence of EPN species against BVW by comparing the vertical dispersal of EPN in the presence and absence of BVW larva. Media type significantly influenced EPN dispersal. Dispersal of H. bacteriophora was higher than H. megidis, H. downesi, or S. kraussei in all media, whereas, S. feltiae and S. carpocapsae dispersal was much reduced and restricted to peat blended with 20% CGW and coir, respectively. In the absence of larvae, most of the EPN species remained in the same segment they were applied in, suggesting that the larvae responded to host volatile cues. Greenhouse trials were conducted to evaluate the efficacy of most virulent strain, H. bacteriophora in conditions more representative of those in the field, using 2.5 × 109 infective juveniles/ha. The efficacy of H. bacteriophora UWS1 against third-instar BVW was 100% in peat, and peat blended with 10% and 20% CGW but only 70% in bark and coir, 2 weeks after application. These studies suggest that potting media significantly affects the efficacy and dispersal of EPN for BVW control.  相似文献   

20.
The susceptibility of larvae of the leek moth, Acrolepiopsis assectella Zeller (Lepidoptera: Acrolepiidae) to different concentrations of an autochthonous strain of Steinernema feltiae (Rhabditida: Steinernematidae) was examined in laboratory experiments using Petri dishes. The efficacy of this strain in pots and field experiments was also evaluated. High mortality (80%–100%) of leek moth larvae was observed when these larvae were exposed to low concentrations (3 × 103 to 1 × 104 IJs/m2) of S. feltiae under laboratory conditions. Foliar application of 30,000 IJs/leek in pot experiments caused a 98% reduction in leek moth larvae. Field experiments showed a 87.7% reduction of leek moth larvae with the nematode treatment, significantly higher than the 22% reduction with the Bacillus thuringiensis treatment. The efficacy of the treatments with S. feltiae in relation to the microhabitat of the leek moth larvae between the interfolded leaves of the leek is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号