首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraguild predation (IGP) among predatory species can influence many plant-arthropod associations. However, the relevance of IGP is poorly understood for truly omnivorous species such as those that can complete development on both animal and plant diets. Here we test the hypothesis that IGP among two omnivorous mirids is more common when extraguild food is either absent or not suitable. Laboratory experiments were performed in experimental cages in order to determine the effect of intraguild prey densities and diet availability on direction and intensity of IGP between Dicyphus tamaninii and Macrolophus caliginosus (Heteroptera: Miridae). Intraguild predation was symmetrical between the two mirid species in the absence of alternative food. Increasing densities of intraguild prey enhanced drastically the incidence of IGP. Intraguild predation was reduced when mirids were in the presence of green or red tomato fruits, but the presence of any other extraguild resources had no impact on IGP level. However, when given before the experiments, all resources with the exception of tomato leaves significantly reduced IGP. A second experiment was performed on live plants to compare the results of the previous trials with that obtained in a more natural setting. No IGP was observed when both mirid species were present on a plant. However, development of the intraguild prey (the more vulnerable stage) was hindered by the presence of the intraguild predator. The potential of such results is discussed from community ecology and biological control perspective.  相似文献   

2.
Intraguild predation (IGP) is a widespread interaction between predatory arthropods, and is influenced by several factors. The harlequin ladybird, Harmonia axyridis (Coleoptera: Coccinellidae), has frequently been reported as an intraguild predator of other Coccinellidae, but little is known about its interactions with other aphidophagous predators, including syrphids. This study investigated the incidence of IGP between H. axyridis and Episyrphus balteatus (Diptera: Syrphidae), the most abundant hoverfly species in Europe and a commercially available aphid biocontrol agent. The influence of size, presence of extraguild prey and habitat complexity were investigated through laboratory experiments in Petri dishes and on potted broad bean plants. In both types of arenas, IGP between H. axyridis and E. balteatus was found to be asymmetric, with the coccinellid in the majority of cases being the intraguild predator. There was a significant effect of size on the frequency of IGP. The efficiency of H. axyridis as an intraguild predator increased with the developmental stage. Early instars of E. balteatus were the most vulnerable to IGP. Pupae of either species were not attacked. In the presence of extraguild prey, the frequency of IGP was substantially reduced. However, IGP still occurred, mainly in combinations of older larvae of H. axyridis with first or second instars of E. balteatus. The size of the arena affected the incidence of IGP in combinations with second instars of E. balteatus, but not in combinations with third instars. Field research is needed to elucidate the ecological relevance of IGP among these predators.  相似文献   

3.
Several models and experimental studies conducted in confined environments have shown that intraguild predation (IGP) can modulate population abundances and structure communities. A number of ecological and abiotic factors determine the nature and frequency of IGP. This study examined the effect of plant architecture and extraguild prey density, and their interactions, on the occurrence of IGP between two species of ladybird, Harmonia axyridis (Pallas) and Propylea quatuordecimpunctata L. (both Coleoptera: Coccinellidae). Theoretical concepts predict that IGP levels would increase with a decrease of both extraguild prey density and plant structural complexity. We conducted a factorial experiment in an open soybean field into which coccinellid larvae were introduced in experimental plots for a period of 5 days. We tested two levels of soybean aphid [Aphis glycines Matsumara (Hemiptera: Aphididae)] density, low and high (100 and 1 000 aphids per plot, respectively), and two levels of plant complexity, low (by removing half of the branches from the soybean plants) and high (by leaving plants intact). We used species‐specific molecular markers to detect the presence of P. quatuordecimpunctata in the digestive tract of H. axyridis. Molecular gut‐content analysis of H. axyridis revealed that rates of IGP were higher (20%) at low aphid density than at high aphid density (<6%). Decreased plant complexity did not impact the frequency of IGP. In accordance with existing literature, this study demonstrates that IGP is amplified at low extraguild prey density. We conclude that considering environmental factors, such as extraguild prey density, is crucial to improve our ability to predict the impact of intraguild predation on community structure and, from an applied perspective, biological control.  相似文献   

4.
Functional responses of the wolf spider, Pardosa pseudoannulata (Boesenberg et Strand) attacking the rice brown planthopper, Nilaparvata lugens (Stål.), and the mirid predator Cyrtorhinus lividipennis Reuter were both those of Holling Type II. The attack rate was higher and handling time lower for C. lividipennis. However, when caged with the two prey, the wolf spider showed a significant preference for N. lugens at a lower prey proportion. Proportions of prey attacked were significantly different from the expected ratios of prey available as well as from the predicted preferences derived from the functional response parameters. As proportions of N. lugens attacked changed from greater to less than expected as the proportions of N. lugens available increased, a “reverse switch” behaviour seems to be evident.  相似文献   

5.
Oviposition decisions made by members of a guild of natural enemies can have evolved to avoid intraguild predation, potentially avoiding the disruption of the extraguild prey control. We have studied the oviposition preference of the aphidophagous predator Episyrphus balteatus De Geer (Diptera: Syrphidae) within colonies of Myzus persicae Sulzer (Hemiptera: Aphididae) in the presence of two developmental stages of the aphid parasitoid Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Results from a greenhouse choice experiment showed that E. balteatus females lay significantly fewer eggs in colonies with mummified aphids than in unparasitized colonies. Colonies of parasitized, but not yet mummified did not contain significantly fewer eggs than colonies with unparasitized aphids. In three no-choice experiments, we assessed stimuli coming from aphid honeydew, from the aphids themselves and also from extracts of the aphid bodies, and all of these stimuli mediate the discrimination of mummified aphids from healthy aphids. To a lesser extent these stimuli also contribute to the discrimination against aphids that are parasitized but not yet mummified. These results suggest that the effects of these two species could be complementary for the control of M. persicae, since the species that acts as an intraguild predator, E. balteatus, avoids ovipositing on aphid colonies parasitized by the intraguild prey, A. colemani.  相似文献   

6.
Predator species with the same prey interact not only by competition for food and space but also by intraguild predation (IGP). The impact of IGP on introduced phytoseiid mites and native species in the context of biological control is a matter of considerable debate. Amblyseius eharai is the dominant native citrus species in central China, while Amblyseius cucumeris and Amblyseius barkeri are candidates for importation. All three species can feed on the spider mite Panonychus citri, which is the main pest in citrus. This study investigated, in the laboratory, possible IGP among these species in the absence and presence of P. citri, respectively. IGP in different densities of shared prey and intraguild (IG) prey was also studied. All three species consumed heterospecific larvae and eggs but not adults, and the IGP rate of larvae was significantly higher than that of eggs in the absence of shared prey. Additionally, the IGP rate of each group was reduced dramatically in the presence of both shared and IG prey when compared to the absence of shared prey. This occurs most likely because the three species prefer to feed on their natural prey P. citri, rather than on IG prey. Our results showed that A. eharai seems to be a more voracious IG predator than A. cucumeris. A. eharai was much more prone to IGP than A. barkeri.  相似文献   

7.
Dicyphine mirids are one of the most important groups of predators on tomato. In the Mediterranean region, several species in the genera Dicyphus, Macrolophus, and Nesidiocoris (Hemiptera: Miridae, Bryocorinae, Dicyphini) colonize protected horticultural crops. In Portugal, Nesidiocoris tenuis (Reuter) is increasingly abundant in the mirid species complex of tomato crops and appears to be displacing the native Dicyphus cerastii Wagner. In order to know whether intraguild predation (IGP) can explain the decreasing abundance of D. cerastii, we evaluated predatory interactions between adult females and first instars of D. cerastii vs. N. tenuis but also D. cerastii vs. Macrolophus pygmaeus (Rambur), as this species is also naturally present in horticultural crops in Portugal. Cannibalistic interactions were also tested for the same three species. All experiments were performed under laboratory conditions, in Petri dish arenas, in the presence or absence of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs as alternative prey. Predation on both heterospecific and conspecific nymphs occurred only in the absence of alternative food. Intraguild predation was mutual and symmetrical between D. cerastii and M. pygmaeus. However, IGP was asymmetrical between D. cerastii and N. tenuis, favouring the first. Cannibalism was not significantly different among these mirid species. Our results show that D. cerastii has a greater capacity to feed on intraguild prey than N. tenuis. Therefore, IGP on small nymphs does not explain the abundance shift between D. cerastii and N. tenuis.  相似文献   

8.
Neoseiulus neobaraki and N. paspalivorus are amongst the most common phytoseiid predators of coconut mite, Aceria guerreronis, found in the spatial niche beneath coconut fruit bracts. Both predators may occur on the same coconut palms in Benin and Tanzania and are therefore likely to interact with each other. Here, we assessed cannibalism and intraguild predation (IGP) of the two predators in the absence and presence of their primary prey A. guerreronis. In the absence of the shared extraguild prey, A. guerreronis, N. neobaraki killed 19 larvae of N. paspalivorus per day and produced 0.36?eggs/female/day, while the latter species killed only 7 larvae of the former and produced 0.35?eggs/female/day. Presence of A. guerreronis only slightly decreased IGP by N. neobaraki but strongly decreased IGP by N. paspalivorus, which consumed 4-7 times less IG prey than N. neobaraki. Resulting predator offspring to IG prey ratios were, however, 4-5 times higher in N. paspalivorus than N. neobaraki. Overall, provision of A. guerreronis increased oviposition in both species. In the cannibalism tests, in the absence of A. guerreronis, N. neobaraki and N. paspalivorus consumed 1.8 and 1.2 conspecific larvae and produced almost no eggs. In the presence of abundant herbivorous prey, cannibalism dramatically decreased but oviposition increased in both N. neobaraki and N. paspalivorus. In summary, we conclude that (1) N. neobaraki is a much stronger intraguild predator than N. paspalivorus, (2) cannibalism is very limited in both species, and (3) both IGP and cannibalism are reduced in the presence of the common herbivorous prey with the exception of IGP by N. neobaraki, which remained at high levels despite presence of herbivorous prey. We discuss the implications of cannibalism and IGP on the population dynamics of A. guerreronis and the predators in view of their geographic and within-palm distribution patterns.  相似文献   

9.
1. Trophic interactions between predators and parasitoids can be described as intraguild predation (IGP) and are often asymmetric. Parasitoids (typically the IG prey) may respond to the threat of IGP by mitigating the predation risk for their offspring. 2. We used a system with a facultative predator Macrolophus caliginosus, the parasitoid Aphidius colemani, and their shared prey, the aphid Myzus persicae. We examined the functional responses of the parasitoid in the presence/absence of the predator on two host plants (aubergine and sweet pepper) with differing IGP risk. 3. Estimated model parameters such as parasitoid handling time increased on both plants where the predator was present, but impact of the predator varied with plant species. The predator, which could feed herbivorously on aubergine, had a reduced impact on parasitoid foraging on that plant. IG predator presence could reduce the searching effort of the IG prey depending on the plant, and on likely predation risk. 4. The results are discussed with regard to individual parasitoid's foraging behaviour and population stability; it is suggested that the presence of the predator can contribute to the stabilisation of host–parasitoid dynamics  相似文献   

10.
The functional response of a predator, Cyrtorrhinus lividipennis, on the brown planthopper, Nilaparvata lugens, was investigated in two different experimental habitats: a piece of tiller in a petri dish (5.5?cm in diameter) and a rice plant in a net cage (5.5?cm diameter?×?43?cm height) for 24?h at room temperature. In the petri dish experiment, 2nd–5th instar nymphs, adult male, and female C. lividipennis were introduced in separate experiments to eggs of N. lugens at densities of five, 10, 20, 30, and 40 eggs per piece of rice. In the rice plant experiment, each C. lividipennis was introduced to a cage with a rice plant containing N. lugens eggs. After 24?h, the number of dead eggs and remaining eggs were counted and data fitted to three functional response models. Among the three types of functional responses, Type II best described the predator response to host densities in N. lugens in both experimental habitats, according to the logistic regression analysis value. The results showed that C. lividipennis was a more effective predator in the rice plant experiment compared to the disc experiment. Additionally, the searching efficiency and handling time parameters were different in the two different experimental habitats. This may cause errors when applying the functional response to biological control and predator–prey models. Different habitats and other environmental conditions from the experiment and natural rice field have to be considered.  相似文献   

11.
Dicyphus maroccanus Wagner and Nesidiocoris tenuis Reuter (Hemiptera: Miridae) are 2 biological control agents in tomatoes. Through the crop seasons, a natural shift in the occurrence of both mirids in favor of N. tenuis has been observed at the end of the cropping cycle in eastern Spain. To better optimize their conservation, the reasons for the observed change, such as intraguild interactions (IGP) or the influence of environmental conditions, are worth elucidating. To do this, we first studied the IGP of adult females on heterospecific nymphs in the laboratory. We next studied exploitative competition between adults and nymphs of each species when feeding on Ephestia kueniella Zeller (Lepidoptera: Pyralidae) eggs in the laboratory. Finally, to analyze the competitive displacement between both mirids, we conducted a semifield experiment in which both predators were released together. All experiments were conducted at 2 temperature regimes (20 and 25°C). Adult‐to‐nymph intraguild interactions occurred only at 25 ºC at very low levels, showing that N. tenuis attacked and consumed a greater proportion of heterospecific nymphs. Nesidiocoris tenuis was a better competitor than D. maroccanus when feeding on the shared prey in the presence of its heterospecific nymph at 25 ºC. In semifield conditions, N. tenuis showed a competitive advantage over D. maroccanus at both temperatures. We conclude that there is not direct interference between both species, however, N. tenuis has a greater ability to outcompete, since it is best adapted to higher temperatures and it is able to remove food sources for D. maroccanus.  相似文献   

12.
The ability of a predator to discriminate against parasitized prey determines the extent of asymmetrical intraguild predation, which is often crucial for the outcome of biological control. Anagyrus nr. pseudococci (Girault) (Hymenoptera: Encyrtidae), a parasitoid of the citrus mealybug, Planococcus citri (Risso) (Hemiptera: Pseudococcidae), suffers from intraguild predation by coccinellids occurring in the same habitat. The level of intraguild predation on A. nr. pseudococci by Nephus includens (Kirsch) (Coleoptera: Coccinellidae) at different immature stages has been investigated with and without simultaneous offer of extraguild prey. Larvae of A. nr. pseudococci appeared to face increased intraguild predation at early developmental stages, whereas mummification provided adequate protection against the predatory coccinellid. Different predation levels on unparasitized vs. parasitized hosts at various developmental stages in choice assays indicated that N. includens preferences might be determined not solely by palatability of the prey but also by its ability to protect itself.  相似文献   

13.
Based on the hypothesis that matching diets of intraguild (IG) predator and prey indicate strong food competition and thus intensify intraguild predation (IGP) as compared to non‐matching diets, we scrutinized diet‐dependent mutual IGP between the predatory mites Neoseiulus cucumeris and N. californicus. Both are natural enemies of herbivorous mites and insects and used in biological control of spider mites and thrips in various agricultural crops. Both are generalist predators that may also feed on plant‐derived substances such as pollen. Irrespective of diet (pollen or spider mites), N. cucumeris females had higher predation and oviposition rates and shorter attack latencies on IG prey than N. californicus. Predation rates on larvae were unaffected by diet but larvae from pollen‐fed mothers were a more profitable prey than those from spider‐mite fed mothers resulting in higher oviposition rates of IG predator females. Pollen‐fed protonymphs were earlier attacked by IG predator females than spider‐mite fed protonymphs. Spider mite‐fed N. californicus females attacked protonymphs earlier than did pollen‐fed N. californicus females. Overall, our study suggests that predator and prey diet may exert subtle influences on mutual IGP between bio‐control agents. Matching diets did not intensify IGP between N. californicus and N. cucumeris but predator and prey diets proximately influenced IGP through changes in behaviour and/or stoichiometry.  相似文献   

14.
Aphidophagous predators compete for the same prey species. During their foraging activity they frequently encounter heterospecific aphid predators. These situations can lead to intraguild predation and may disrupt biological control efforts against aphids where more than one predator species is present. We investigated the behavior of larvae of the hoverfly Episyrphus balteatus de Geer and its interaction with three other aphid predators: the ladybird Coccinella septempunctata L., the lacewing Chrysoperla carnea Stephens, and the gall midge Aphidoletes aphidimyza (Rondani). Interspecific interactions between predators were examined in arenas of different sizes and in the presence of extraguild prey. The outcome of interactions between E. balteatus larvae and the other predators depended predominantly on the relative body size of the competitors. Relatively large individuals acted as intraguild predators, while relatively smaller individuals became intraguild prey. Eggs and first- as well as second-instar larvae of E. balteatus were highly susceptible to predation by all other predators, whereas pupae of E. balteatus were preyed upon only by the larvae of C. carnea. Interactions between A. aphidimyza and E. balteatus were asymmetric and always favored the latter. Eggs and first- as well as second-instar larvae of E. balteatus sustained intraguild predation irrespective of the size of the arena or the presence of extraguild prey. However, the frequency of predation on third-instar larvae of E. balteatus was significantly reduced. This study indicated that the same species can be both intraguild predator and intraguild prey. It is suggested that combinations of predators must be carefully chosen for success in biological control of aphids.  相似文献   

15.
Jenkins GP  King D 《Oecologia》2006,147(4):641-649
Intraguild predation (IGP) is common in most communities, but many aspects of density-dependent interactions of IG predators with IG prey are poorly resolved. Here, we examine how the density of an IG predator can affect feeding group size, IG egg predation, and the growth responses of IG prey. We used laboratory feeding trials and outdoor mesocosm experiments to study interactions between a social intraguild predator (larvae of the wood frog; Rana sylvatica) and its prey (spotted salamander; Ambystoma maculatum). Larvae of R. sylvatica could potentially affect A. maculatum by consuming shared larval food resources or by consuming eggs and hatchlings. However, successful egg predation requires group feeding by schooling tadpoles. We established from five to 1,190 hatchlings of R. sylvatica in mesocosms, then added either 20 A. maculatum hatchlings to study interspecific competition, or a single egg mass to examine IGP. Crowding strongly suppressed the growth of R. sylvatica, and IGP was restricted to the egg stage. In the larval competition experiment, growth of A. maculatum was inversely proportional to R. sylvatica density. In the predation experiment, embryonic mortality of A. maculatum was directly proportional to the initial density of R. sylvatica and the mean number of tadpoles foraging on egg masses. IGP on eggs reduced A. maculatum hatchling density, which accelerated larval growth. Surprisingly, the density of R. sylvatica had no overall effect on A. maculatum growth because release from intraspecific competition via egg predation was balanced by increased interspecific competition. Our results demonstrate that the density of a social IG predator can strongly influence the nature and intensity of interactions with a second guild member by simultaneously altering the intensity of IGP and intra- and interspecific competition.L . A. Burley and A. T. Moyer contributed equally to this work.  相似文献   

16.
A growing body of research has examined the effect of shared resource density on intraguild predation (IGP) over relatively short time frames. Most of this work has led to the conclusion that when the shared resource density is high, the strength of IGP should be lower, due to prey dilution. However, experiments addressing this topic have been done using micro- or mesocosms that excluded the possibility of intraguild predator aggregation. We examined the effect of shared resource density on IGP of an aphid parasitoid in an open field setting where the effects of prey dilution and predator aggregation could occur simultaneously. We brought potted soybean plants with 2, 20, or 200 soybean aphids (Aphis glycines) and 20 pupae (‘mummies’) of the soybean aphid parasitoid Binodoxys communis into soybean fields in Minnesota, USA. We monitored predator aggregation onto the potted plants, predation of parasitoid mummies, and successful adult emergence of B. communis. We found that predator aggregation was higher at the higher aphid densities on our experimental plants and that this coincided with lower adult emergence of B. communis, indicating that even if a prey dilution effect occurred in our study, it was overcome by short-term predator aggregation. Our results suggest that the effect of shared resource density on IGP may be more nuanced in a field setting than in microcosms due to predator aggregation.  相似文献   

17.
18.
Laboratory cages were used to evaluate the influence of extraguild (EGprey) and intraguild prey (IGprey) densities on the direction, symmetry and magnitude of the intraguild predation (IGP) of the aphidophagous Harmonia axyridis Pallas on Coccinella undecimpunctata L. and vice versa. In order to understand the role of competition between IGprey, the experiments included treatments with one IGpredator, with one or four IGprey and EGprey (Aphis fabae Scopoli) ranging from zero to sufficient aphids to satiate the predators for 12, 24 or 48 h. Increases in EGprey and IGprey densities did not alter the direction, but decreased the magnitude and symmetry of IGP. Predation on one individual of IGprey decreased from more than 80%, in the absence of EGprey, to from 6% to 53%, at higher EGprey densities. Decrease in IGP was less when H. axyridis was the IGpredator. Even at high EGprey densities, eggs and 2nd larval stages of C. undecimpunctata were vulnerable to IGP and the level of predation was 40% and 53%. The presence of more than one IGprey increased the magnitude of IGP mainly at EGprey densities sufficient to satiate the predators for 12 and 24 h, suggesting that competition between the IGpredator and IGprey may be one of the processes promoting IGP. These results and those of other authors suggest that H. axyridis has the potential to be an IGpredator, mainly of the most vulnerable stages of IGprey. Thus, H. axyridis may negatively affect the survival of C. undecimpunctata, when these two species exploit the same resources.  相似文献   

19.
Intraguild predation (IGP) betweenthe pentatomid Podisus maculiventris(Say) and the coccinellid Harmoniaaxyridis (Pallas) in the absence or presenceof the extraguild prey Spodopteralittoralis (Boisduval) and Myzuspersicae (Sulzer) was studied in thelaboratory. Interactions were asymmetric infavor of the pentatomid. Podisusmaculiventris readily fed upon eggs and larvaeof H. axyridis, but adult beetles wererarely attacked. Success of attacks by P.maculiventris was stage dependent, fourthinstars and adults being more successful inkilling ladybeetle larvae than second instars.Attacks by H. axyridis on the pentatomidwere rare and none of them were successful. Theeffect of introducing extraguild prey on thelevel of IGP was tested both in petri dishesand on caged sweet pepper plants. Whensufficient numbers of S. littoralislarvae were present to satiate the pentatomid,predation on H. axyridis larvae decreasedsignificantly, indicating that the coccinellidis a less preferred or less vulnerable prey.When the aphid M. persicae was presentedas extraguild prey, levels of IGP were notaltered. Nymphs of P. maculiventrissuccessfully completed development whenexclusively fed on larvae of H. axyridis,but developmental time was longer than onlepidopteran prey. No pentatomid nymphs reachedadulthood on aphids alone. IGP by P.maculiventris on H. axyridis may be ofsome importance in greenhouse crops, where bothpredators are being used increasingly inaugmentative biological control programs.Nonetheless, it is expected that in practicelarger larvae and adults of H. axyridiswill escape most attacks by the pentatomid.  相似文献   

20.
This study was carried out on the ability of predatory thrips Scolothrips longicornis Priesner to feed on 2 phytoseiid species and vice versa. Also the effect of predation of Neoseiulus californicus (McGregor) on Typhlodromus bagdasarjani Wainstein and Arutunjan and vice versa was evaluated. The larvae, prepupae, and pupae of thrips and the eggs, larvae, and protonymphs of phytoseiids were selected as intraguild prey. The intraguild predation (IGP) among S. longicornis and 2 phytoseiid species was unidirectional and in favor of phytoseiids, i.e., S. longicornis was not able to feed on larval stages of 2 phytoseiids. However, N. californicus and T. bagdasarjani fed on the 1st instar larvae (1.39 and 0.80 per day), 2nd instar larvae (0.87 and 0.55 per day), prepupae (0.51 and 0.48 per day), and pupae of thrips (0.51 and 0.49 per day, respectively). Both phytoseiids fed on eggs, larvae, and protonymphal stages of each other. Females of N. californicus consumed more phytoseiid larvae (2.49 per day) than T. bagdasarjani, which consumed 1.08 N. californicus larvae per day. When Tetranychus urticae was presented as an extraguild prey, intensity of IGP between 2 species of phytoseiids and on larval stages of S. longicornis reduced significantly. Therefore, it is concluded that (i) IGP existed among the 3 examined species and lack of feeding of S. longicornis on 2 phytoseiid species can be justified by its feeding type (monophagy), (ii) N. californicus was much more prone to IGP than was T. bagdasarjani.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号