首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper describes the field-level symptoms, the identification and management of Sclerotinia stem rot of lentil caused by the soilborne plant pathogen Sclerotinia sclerotiorum in Greece. Regarding symptoms at a field level, initially plants before flowering turn yellow with roots and the base of the plants become brown; then rotten plants exhibit a dry stem and die. On the diseased tissue, at the base of the stem, the typical white mycelium and the resting bodies (sclerotia) were observed. According to our pathogenicity studies in vitro, on the infected plant tissues the fungus first develop a characteristic fluffy white mycelium which will give rise to large black sclerotia, the most obvious evidence of plants infected with S. sclerotiorum. Finally, concerning evaluation of fungicides, isolates of S. sclerotiorum were sensitive to thiophanate-methyl and to triazole fungicides. Thiophanate-methyl and triazole fungicides proved to be most effective in controlling the disease emerged from mycelium or sclerotia.  相似文献   

2.
The gfp gene from the jellyfish Aequorea victoria, coding for the Green Fluorescent Protein (GFP), was used as a reporter gene to transform a Trichoderma virens strain I10, characterized as having a promising biocontrol activity against a large number of phytopathogenic fungi. On the basis of molecular and biological results, a stable GFP transformant was selected for further experiments. In order to evaluate the effects of GFP transformation on mycoparasitic ability of T. virens I10, sclerotia of Sclerotium rolfsii, Sclerotinia sclerotiorum and S. minor were inoculated with the T. virens strain I10 GFP transformant or the wild type strain. Statistical analysis of percentages of decayed sclerotia showed that the transformation of the antagonistic isolate with the GFP reporter gene did not modify mycoparasitic activity against sclerotia. Sclerotium colonization was followed by fluorescent microscopy revealing intracellular growth of the antagonist in the cortex (S. rolfsii) and inter-cellular growth in the medulla (S. rolfsii, and S. sclerotiorum). The uniformly distributed mycelium of T. virens just beneath the rind of sclerotia of both S. rolfsii and S. sclerotiorum suggests that the sclerotia became infected at numerous randomly distributed locations without any preferential point of entry.  相似文献   

3.
The fungal pathogen Sclerotinia sclerotiorum is responsible for Sclerotinia blight in several crops around the world, including peanut. This study was conducted under laboratory conditions to determine the effects of four registered fungicides, Propulse?, Fontelis®, Omega® and Endura® on mycelial growth and pigmentation, as well as sclerotia and oxalic acid production on a growth medium modified with a fungicide and on the pathogenicity of S. sclerotiorum on leaflets detached from Valencia peanut. Propulse, Omega and Fontelis inhibited mycelial growth of S. sclerotiorum, while, mycelial growth on a modified support with Endura was similar to the control treatment. All fungicides, except Endura, inhibited the production of oxalic acid. Pigmentation of the mycelium was observed in both the control and endura treatments. Sclerotia production was observed only in the control treatment. With the exception of Endura, all fungicides were effective in controlling the development of lesions on Valencia peanut leaflets.  相似文献   

4.
Trichoderma spp. are known for their biocontrol activity against several plant pathogens. A specific isolate of Trichoderma harzianum, 303/02, has the potential to inhibit the growth of Sclerotinia sclerotiorum, an important agent involved in several crop diseases. In this study, the interaction between T. harzianum 303/02 and mycelia, sclerotia and apothecia of S. sclerotiorum was studied by scanning electron microscopy. RT-qPCR was used to examine the expression of 11 genes potentially involved in biocontrol. T. harzianum 303/02 parasitizes S. sclerotiorum by forming branches that coil around the hyphae. The fungus multiplied abundantly at the sclerotia and apothecia surface, forming a dense mycelium that penetrated the inner surface of these structures. The levels of gene expression varied according to the type of structure with which T. harzianum was interacting. The data also showed the presence of synergistic action between the cell-wall degrading enzymes.  相似文献   

5.
Emergence of Amsoy soybean (Glycine max) seed inoculated withSclerotinia sclerotiorum was significantly reduced below noninoculated seed at soil temperatures of 25°, 30°, and 35 °C, but not at 20 °C.S. sclerotiorum was readily reisolated from wound-inoculated stems of seedlings and nearly mature plants above the point of inoculation and below to the crown area, but not from roots. The fungus was recovered from stems but not roots of 15-day seedlings grown in sterile soil before infestation of the soil surface with a suspension of mycelium and sclerotia and assayed at 15 days after soil infestation. When compared to healthy, seeds, infected seeds withS. sclerotiorum were characterized by appearing flattened.Supported in part by the Illinois Agricultural Experiment Station; Regional Project S-72; and U.S. Agency for International Development, grant csd-1922.  相似文献   

6.
Sclerotinia sclerotiorum survived in infected seeds of white beans as dormant mycelium in testa and cotyledons. The rate of survival averaged 85 to 89% and did not change appreciably over a 3-year period. When the infected bean seeds were sown in soil or sand, 88 to 100% failed to germinate. The seeds that failed to germinate, depending on the severity of seed infection, were rotted by S. sclerotiorum. In place of each seed, 3 to 6 sclerotia were formed. A low percentage of these sclerotia germinated carpogenically with or without preconditioning, (2.5 and 11.5% respectively). Myceliogenic germination of sclerotia with and without preconditioning was 35.5% and 70.5% on water agar and 81.0% and 93.0% on glucose agar, respectively. Both, preconditioning and nonpreconditioned sclerotia which were scattered on soil surface could germinate myceliogenically and infect bean leaves by contact. It is therefore, concluded that dormant mycelia in the infected seeds play an important role notonly in dissemination of the fungus but also in epidemiology of the disease.  相似文献   

7.
Sclerotia of Sclerotinia sclerotiorum were incubated on cultures of Trichoderma harzianum. Myceliogenic germination decreased by 50% within 1 day and continued to decrease over time. Quantitative PCR showed a decrease in Sclerotinia DNA for older sclerotia, but not fresh sclerotia. Trichoderma DNA increased and persisted inside older sclerotia but not fresh sclerotia.  相似文献   

8.
Aspects of the biology of Gliocladium virens and parasitism of sclerotia of Sclerotinia sclerotiorum in soil were studied. G. virens parasitized and decayed sclerotia of S. sclerotiorum, S. minor, Botrytis cinerea, Sclerotium, rolfsii and Macrophomina phaseolina on laboratory media and caused a reduction in survival of sclerotia of S. sclerotiorum in soil. It was active over a broad range of soil moisture levels and over the entire agricultural soil pH range. The main factor limiting its use as a biological control agent was its temperature requirements.  相似文献   

9.
As indicated by reduced cellulolysis, Zygorrhynchus moelleri suppressed mycelial growth in Rhizoctonia solani and Sclerotinia sclerotiorum. Sclerotium production by both pathogenic fungi was also reduced by Z. moelleri in dual sand-oatmeal cultures. The viability of sclerotia produced by S. sclerotiorum, but not those produced by R. solani, was greatly reduced. Sclerotium production by S. sclerotiorum on celery and tomato segments was reduced to a much greater extent when Z. moelleri was applied to the plant tissue 24 h before the pathogen than when applied at the same time or 24 h after the pathogen.  相似文献   

10.
Scanning electron microscopy showed that hyphae of Coniothyrium minitans produced appressorium-like swellings when they came in contact with Sclerotinia sclerotiorum in dual culture on PDA. The parasitized hyphae gradually skrank and collapsed, and hyphae of the mycoparasite were found inside the host hyphae. The mycoparasite hyphae grew inter- and intracellularly within the sclerotia of S. sclerotiorum. In the later stages of parasitism, hyphae of the mycoparasite proliferated extensively within the sclerotia and formed pycnidia near the sclerotial surface. At this stage, the sclerotia became flattened, soft and disintegrated. Sclerotia parasitized by C. minitans failed to germinate either myceliogenically or carpogenically.  相似文献   

11.
Sclerotinia sclerotiorum, a pathogen of more than 600 host plants, secretes oxalic acid to regulate the ambient acidity and provide conducive environment for pathogenicity and reproduction. Few Aspergillus spp. were previously proposed as potential biocontrol agents for S. sclerotiorum as they deteriorate sclerotia and prevent pathogen's overwintering and initial infections. We studied the nature of physical and biochemical interactions between Aspergillus and Sclerotinia. Aspergillus species inhibited sclerotial germination as they colonized its rind layer. However, Aspergillus-infested sclerotia remain solid and viable for vegetative and carpogenic germination, indicating that Aspergillus infestation is superficial. Aspergillus spp. of section Nigri (Aspergillus japonicus and Aspergillus niger) were also capable of suppressing sclerotial formation by S. sclerotiorum on agar plates. Their culture filtrate contained high levels of oxalic, citric and glutaric acids comparing to the other Aspergillus spp. tested. Exogenous supplementation of oxalic acid altered growth and reproduction of S. sclerotiorum at low concentrations. Inhibitory concentrations of oxalic acid displayed lower pH values comparing to their parallel concentrations of other organic acids. Thus, S. sclerotiorum growth and reproduction are sensitive to the ambient oxalic acid fluctuations and the environmental acidity. Together, Aspergillus species parasitize colonies of Sclerotinia and prevent sclerotial formation through their acidic secretions.  相似文献   

12.
Emergence of Amsoy soybean (Glycine max) seed inoculated withSclerotinia sclerotiorum was significantly reduced below noninoculated seed at soil temperatures of 25, 30 and 35 °C, but not at 20 °C.S. sclerotiorum was readily·reisolated from wound-inoculated stems of seedlings and nearly mature plants above the point of inoculation below to the crown area, but not from roots. The fungus was recovered from stems but not roots of seedlings grown in sterile soil for 15 days before infestation of the soil surface with a suspension of mycelium and sclerotia and assayed at 15 days after soil infestation. When compared to healthy, seed infected withS. sclerotiorum were characterized by appearing flattened.Supported in part by the Illinois Agricultural Experiment Station; Regional Project S-72; and U.S. Agency for International Development, grant csd-1922.  相似文献   

13.
The relatively slow germination rate of Coniothyrium minitans limits its control efficiency against Sclerotinia sclerotiorum. Pre-germinated conidia of C. minitans enhanced its efficiency significantly: in foliar experiments with oilseed rape, hyphal extension of S. sclerotiorum was inhibited by 68%, while formation of sclerotia was completely inhibited when pre-germinated conidia were applied.Revisions requested 27 July 2004; Revisions received 7 September  相似文献   

14.
Biological control agents (BCAs) were evaluated for their efficacy on reducing the number of sclerotia of Sclerotinia sclerotiorum (Lib.) de Bary in the soil and on Sclerotinia stem rot in soybean production systems in Michigan. BCAs included Coniothyrium minitans CON/M/91–08 (Product name: Contans®WG), Streptomyces lydicus WYEC 108 (Actinovate®AG), Trichoderma harzianum T-22 (PlantShield®HC), and Bacillus subtilis QST 713 (Serenade®MAX). At two field locations, soil artificially infested with S. sclerotiorum sclerotia, was treated by incorporating the above BCAs in the topsoil before planting and boscalid was applied as a foliar fungicide at growth stage R1 as a positive control. C. minitans was the most effective BCA and reduced the disease severity index (DSI) by 68.5% and the number of sclerotia of S. sclerotiorum in the soil by 95.3%. S. lydicus and T. harzianum reduced DSI by 43.1% and 38.5% and sclerotia in soil by 90.6% and 70.8%, respectively. B. subtilis only had a marginal effect on S. sclerotiorum. Populations of Bacillus, Streptomyces, Trichoderma spp., and C. minitans collected from soil samples and at 3, 28, 71, and 169 days after BCA application indicated that the population of Streptomyces, Trichoderma spp., and C. minitans did not change significantly throughout the season, which may be the reason for their effectiveness.  相似文献   

15.
[目的]筛选高效拮抗向日葵菌核菌的细菌菌株,为开发防治菌核菌病害、提高向日葵产量的生物菌剂提供菌种资源。[方法]以羧甲基纤维素钠(CMC)、小麦秸秆纤维素为唯一碳源的无机盐培养基,分离高效降解纤维素的细菌菌株;采用纤维素降解菌与菌核菌的平板对峙方法,进一步筛选拮抗菌核菌的菌株;利用16S rDNA序列鉴定菌株、PDYA平板对峙实验检验上述所选拮抗菌株的抑菌谱;采用离体向日葵新鲜叶片、草炭土基质盆栽实验,观察拮抗菌菌株抑制菌核菌生长的能力;温室盆栽和田间试验条件下,研究其防治向日葵菌核菌病害、促进生长和提高产量的效果。[结果]筛选了一株高效抑制菌核菌的细菌YC16,经过16S rDNA序列分析,鉴定为解淀粉芽孢杆菌。YC16菌株能够抑制8种病原真菌生长,包括齐整小核菌、腐皮镰孢菌、尖孢镰刀菌、稻梨孢、辣椒疫霉、镰刀菌、尖镰孢黄瓜专化型和向日葵菌核菌;抑制菌核菌感染叶片,抑制率达到了80.42%;抑制盆栽基质中菌核菌的菌丝生长,基质表面菌丝密度比对照减少了50%以上。盆栽接种YC16的向日葵生物量比对照提高54.9%,田间向日葵接种YC16菌剂对菌核菌引发的盘腐病防治效果达39%-100%,产量提高24.4%-30.2%。[结论]YC16生物菌剂施用于土壤,能够有效防治向日葵的茎腐病和盘腐病,展现了防治向日葵菌核病和提高产量的双重效果,是一株具有良好应用前景的高效菌种资源。  相似文献   

16.
In the present study, the endophytic bacterium Bacillus subtilis strain Em7 (GU258545.1) was evaluated as a biological control agent for Sclerotinia sclerotiorum on oilseed rape. In petri dish, strain Em7 not only strongly inhibited pathogen mycelium growth but also germination of sclerotia at concentrations between 109 and 1011 colony forming unit (CFU)·ml?1. Scanning electron microscopy and transmission electron microscopy studies revealed that in the presence of strain Em7, hyphae of S. sclerotiorum showed leakage and disintegration of hyphal cytoplasm. Furthermore, the strain Em7 showed a broad antifungal spectrum on mycelium growth of numerous important plant pathogenic fungi. Light microscopic observations revealed that strain Em7 caused morphological alterations including increased branching, swelling and collapse of cytoplasm. In the greenhouse, spray treatments of cell suspensions of strain Em7 (1×109 CFU·ml?1) reduced leaf and stem rot incidence and severity in the seedling and blossom stage. The control efficacy was higher when strain Em7 cell suspension was applied one day prior to inoculation of the pathogen than after inoculation. Three-year field trials showed that two applications of strain Em7 cell suspension at blossom stage significantly reduced disease incidence and severity by 50–70%. There was no significant difference in control efficacy among treatments with strain Em7 cell suspension and the fungicides containing carbendazim or tebuconazole (P = 0.05). Thus, our results strongly suggest that B. subtilis strain Em7 is a promising biological control agent for control of oilseed rape Sclerotinia stem rot.  相似文献   

17.
Summary Literature pertaining to sclerotial Aspergilli has been reviewed in brief. Observations on the effect of certain environmental conditions viz. pH, light, temperature of incubation, oxygen-deficient conditions and various relative humidity values on sclerotia production byAspergillus niger van Tieghem, (two strains),A. flavus Link (two strains),A. sclerotiorum Hüber (one strain) andA. paradoxus Fennell &Raper (one strain) and on cleistothecia production byA. nidulans (Eidam)Wint. (one strain) have been presented. Optimum pH for sclerotia or cleistothecia production was 7.5. In other respects sclerotia and cleistothecia behaved similarly. In general, condition showing maximum sclerotia or cleistothecia production was the one that showed maximum vegetative growth. Certain strains of the same species reponded differently to the same condition. Light completely inhibited sclerotia formation in one strain ofA. flavus. InA. paradoxus, in general, conditions favouring sclerotia production were those that inhibited (or retarded) the formation of conidial heads and the yellow pigment in the medium. Oxygen-deficient conditions inhibited or retarded sclerotia or cleistothecia formation. Production of sclerotia and cleistothecia increased with an increase in relative humidity values. No definite correlation could be observed between extent of sporulation and sclerotia or cleistothecia production except in case of relative humidity. Parallelism in the behaviour of sclerotia and cleistothecia production inAspergillus lends further support in favour of the hypothesis that in this genus sclerotia are sterile stromata.  相似文献   

18.
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen with a worldwide distribution. The sclerotia of S. sclerotiorum are pigmented multicellular structures formed from the aggregation of vegetative hyphae. These survival structures play a central role in the life and infection cycles of this pathogen. Here, we characterized an atypical forkhead (FKH)‐box‐containing protein, SsFKH1, involved in sclerotial development and virulence. To investigate the role of SsFkh1 in S. sclerotiorum, the partial sequence of SsFkh1 was cloned and RNA interference (RNAi)‐based gene silencing was employed to alter the expression of SsFkh1. RNA‐silenced mutants with significantly reduced SsFkh1 RNA levels exhibited slow hyphal growth and sclerotial developmental defects. In addition, the expression levels of a set of putative melanin biosynthesis‐related laccase genes and a polyketide synthase‐encoding gene were significantly down‐regulated in silenced strains. Disease assays demonstrated that pathogenicity in RNAi‐silenced strains was significantly compromised with the development of a smaller infection lesion on tomato leaves. Collectively, the results suggest that SsFkh1 is involved in hyphal growth, virulence and sclerotial formation in S. sclerotiorum.  相似文献   

19.
Izumi Saito 《Mycoscience》1997,38(2):227-236
A newSclerotinia, previously reported asS. intermedia from Japan, is described asSclerotinia nivalis on the morphological basis of the sclerotial anamorph and teleomorph produced in culture. The characters assigning this species to the genusSclerotinia are the tuberoid sclerotia superficially produced on suscepts, the small sclerotia produced on aerial mycelium in culture, the interhyphal spaces in medullary tissue of sclerotia, and the globose cells constructing the ectal excipulum of apothecia. It is distinguishable fromS. sclerotiorum, S. minor, andS. trifoliorum by the intermediate sized sclerotia in culture, binucleate ascospores, the molecular mass of major proteins of sclerotia, and the patterns of esterase isozymes in sclerotial extracts. AlthoughS. nivalis causes snow mold of various dicots, it is a mesophile having an optimum temperature for mycelial growth of around 20°C. It attacks edible burdock(Arctium lappa), Chryhsanthemum morifolium, Ambrosia elatior, carrot(Daucus carota), Angelica acutiloba, Ajuga reptans, andPlantago lanceolata.  相似文献   

20.
Biological control agents (BCAs) Bacillus subtilis QST 713, Coniothyrium minitans CON/M/91-08, Streptomyces lydicus WYEC 108, and Trichoderma harzianum T-22 were evaluated for their efficacy in the reduction of survival of sclerotia and production of apothecia of Sclerotinia sclerotiorum under controlled environments. A growth chamber assay was conducted where 25 sclerotia were buried in pots containing potting soil, and BCAs were drenched into the soil at various concentrations, and five soybean seeds were planted in each pot. The presence and number of S. sclerotiorum apothecia were recorded daily. Sclerotinia sclerotiorum sclerotia were retrieved six weeks after seeding and viability was assessed on water agar plates. All BCAs were effective in reducing S. sclerotiorum inoculum at various efficacies. In general, efficacy was positively correlated with the rate of application. At the rate of application when the efficacy did not change significantly by increasing the rate, the BCAs had various reductions of apothecia and sclerotia. B. subtilis reduced apothecia and sclerotia by 91.2 and 29.6%, respectively; C. minitans reduced apothecia and sclerotia by 81.2 and 50%, respectively; Streptomyces lydicus reduced apothecia and sclerotia by 100 and 29.6%, respectively; Trichoderma harzianum reduced apothecia and sclerotia by 80.5 and 31.7%, respectively. In addition, the commercial strain of C. minitans CON/M/91-08, and a wild Michigan strain of C. minitans W09 were compared for their growth and sclerotial reduction. W09 had faster growth rate than the commercial strain, indicating potential diversities of biological control strains to be studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号