首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Vitro Processing of Aleurain,a Barley Vacuolar Thiol Protease   总被引:8,自引:2,他引:6       下载免费PDF全文
Aleurain, originally described from its cDNA as a thiol protease [Rogers, J.C., Dean, D., and Heck, G.R. (1985). Proc. Natl. Acad. Sci. USA 82, 6512-6516], is characterized here as a glycoprotein that is targeted to a distinct vacuolar compartment in aleurone cells. Monospecific antibodies to a bacterial trpE-aleurain fusion protein were used to show that aleurain is made as a 42-kilodalton (kD) proenzyme (proaleurain) that is proteolytically processed in a post-Golgi compartment in two steps to form a 32-kD protein. The first processing step is the discrete loss of 9 kD from proaleurain to yield a 33-kD intermediate that is further processed by the gradual loss of 1 kD resulting in mature 32-kD aleurain. Using proaleurain secreted from Xenopus oocytes as a substrate, we established an in vitro system using aleurone cell extracts that correctly processes proaleurain to a stable protein that is indistinguishable from native barley aleurain as judged by partial digestion with staphylococcal V8 protease. Proaleurain is not capable of self-cleavage in the absence of aleurone cell extracts and mature aleurain appears not to participate in processing in vitro.  相似文献   

2.
The PRB1 gene of Saccharomyces cerevisiae encodes the vacuolar endoprotease protease B. We have determined the DNA sequence of the PRB1 gene and the amino acid sequence of the amino terminus of mature protease B. The deduced amino acid sequence of this serine protease shares extensive homology with those of subtilisin, proteinase K, and related proteases. The open reading frame of PRB1 consists of 635 codons and, therefore, encodes a very large protein (molecular weight, greater than 69,000) relative to the observed size of mature protease B (molecular weight, 33,000). Examination of the gene sequence, the determined amino-terminal sequence, and empirical molecular weight determinations suggests that the preproenzyme must be processed at both amino and carboxy termini and that asparagine-linked glycosylation occurs at an unusual tripeptide acceptor sequence.  相似文献   

3.
We have studied the biosynthesis of the cation-dependent mannose 6-phosphate receptor in murine BW5147 lymphoma cells and MOPC 315 plasmacytoma cells. The cells were labeled with [35S]methionine or [2-3H]mannose and the receptor immunoprecipitated with an anti-receptor antiserum. The receptor was first detected as a glycoprotein with an apparent molecular mass of 40 kDa. This intermediate was rapidly processed to a mature form which was stable during 22 h of chase. In these cells, the mature receptor has an apparent molecular mass of 43 kDa. The 3-kDa increase occurs as a result of processing of Asn-linked high-mannose oligosaccharides to complex-type units.  相似文献   

4.
Platelet-derived growth factor is a potent mitogen for cells of mesenchymal origin. It is made up of two polypeptide chains (A and B) combined in three disulfide-linked dimeric forms (AA, AB, and BB). Here, the biosynthesis and proteolytic processing of the two homodimeric forms of PDGF (AA and BB) were studied in CHO cells stably transfected with A-chain (short splice version) or B-chain cDNA. PDGF-AA was processed to a 30-kD molecule which was secreted from the cells. In contrast, PDGF-BB formed two structurally distinct end products; a minor secreted 30-kD form and a major cell-associated 24-kD form. Immunocytochemical studies at light- and electron-microscopical levels revealed presence of PDGF in the Golgi complex, in lysosomes, and to a smaller extent in the ER. From analysis of cells treated with brefeldin A, an inhibitor of ER to Golgi transport, it was concluded that dimerization occurs in the ER, whereas the proteolytic processing of PDGF-AA and PDGF-BB precursors normally occurs in a compartment distal to the ER. Exposure of the cultures to the lysosomal inhibitor chloroquine led to an increased cellular accumulation of PDGF-BB, as determined both by metabolic labeling experiments and immunocytochemical methods, indicating that the retained form of PDGF-BB is normally degraded in lysosomes. Structural analysis of the two end products of PDGF-BB revealed that the secreted 30-kD form is a dimer of peptides processed as the B-chain of PDGF purified from human platelets, and that the retained 24-kD form is made up of subunits additionally processed in the NH2-terminus. Also, the 24-kD form was shown to be composed of proteolytic fragments held together by disulfide bridges. Taken together these findings suggest that the newly synthesized PDGF A- and B-chains are dimerized in the ER and thereafter transferred to the Golgi complex for proteolytic processing. From there, PDGF-AA is carried in vesicles to the cell surface for release extracellularly by exocytosis. A smaller part of PDGF-BB (the 30-kD form) is handled in a similar way, whereas the major part (the 24-kD form) is generated by additional proteolysis in the Golgi complex, from which it is slowly carried over to lysosomes for degradation.  相似文献   

5.
Arabidopsis RD21 is a cysteine protease of the papain family. Unlike other members of the papain family, RD21 has a C-terminal extension sequence composed of two domains, a 2-kD proline-rich domain and a 10-kD domain homologous to animal epithelin/granulin family proteins. The RD21 protein was accumulated as 38- and 33-kD proteins in Arabidopsis leaves. An immunoblot showed that the 38-kD protein had the granulin domain, whereas the 33-kD protein did not. A pulse-chase experiment with Bright-Yellow 2 transformant cells expressing RD21 showed that RD21 was synthesized as a 57-kD precursor and was then slowly processed to make the 33-kD mature protein via the 38-kD intermediate. After a 12-h chase, the 38-kD intermediate was still detected in the cells. These results indicate that the N-terminal propeptide was first removed from the 57-kD precursor, and the C-terminal granulin domain was then slowly removed to yield the 33-kD mature protein. Subcellular fractionation of the Bright-Yellow 2 transformant showed that the intermediate and mature forms of RD21 were localized in the vacuoles. Under the acidic conditions of the vacuolar interior, the intermediate was found to be easily aggregated. The intermediate and the mature protein were accumulated in association with leaf senescence. Taken together, these results indicate that the intermediate of RD21 was accumulated in the vacuoles as an aggregate, and then slowly matured to make a soluble protease by removing the granulin domain during leaf senescence.  相似文献   

6.
The Kex2 protease of the yeast Saccharomyces cerevisiae is a prototypical eukaryotic prohormone-processing enzyme that cleaves precursors of secreted peptides at pairs of basic residues. Here we have established the pathway of posttranslational modification of Kex2 protein using immunoprecipitation of the biosynthetically pulse-labeled protein from a variety of wild-type and mutant yeast strains as the principal methodology. Kex2 protein is initially synthesized as a prepro-enzyme that undergoes cotranslational signal peptide cleavage and addition of Asn-linked core oligosaccharide and Ser/Thr-linked mannose in the ER. The earliest detectable species, I1 (approximately 129 kD), undergoes rapid amino-terminal proteolytic removal of a approximately 9-kD pro-segment yielding species I2 (approximately 120 kD) before arrival at the Golgi complex. Transport to the Golgi complex is marked by extensive elaboration of Ser/Thr-linked chains and minor modification of Asn-linked oligosaccharide. During the latter phase of its lifetime, Kex2 protein undergoes a gradual increase in apparent molecular weight. This final modification serves as a marker for association of Kex2 protease with a late compartment of the yeast Golgi complex in which it is concentrated about 27-fold relative to other secretory proteins.  相似文献   

7.
SH-EP is a cysteine protease from germinating mung bean (Vigna mungo) that possesses a carboxyl-terminal endoplasmic reticulum (ER) retention sequence, KDEL. In order to examine the function of the ER retention sequence, we expressed a full-length cDNA of SH-EP and a minus-KDEL control in insect Sf-9 cells using the baculovirus system. Our observations on the synthesis, processing, and trafficking of SH-EP in Sf-9 cells suggest that the KDEL ER-retention sequence is posttranslationally removed either while the protein is still in the ER or immediately after its exit from the ER, resulting in the accumulation of proSH-EP minus its KDEL signal. It is this intermediate form that appears to progress through the endomembrane system and is subsequently processed to form mature active SH-EP. The removal of an ER retention may regulate protein delivery to a functional site and present an alternative role for ER retention sequences in addition to their well established role in maintaining the protein composition of the ER lumen.  相似文献   

8.
A 75-kDa melanosomal glycoprotein (gp75) is the product of a gene that maps to the b (brown) locus, a genetic locus that determines coat color in the mouse. The b locus is conserved (88% identity) between mouse and human. The mouse monoclonal antibody TA99 was used to study the biosynthesis and processing of gp75. gp75 was synthesized as a 55-kDa polypeptide, glycosylated by addition and processing of five or more Asn-linked carbohydrate chains through the cis and trans Golgi, and transported to melanosomes as a mature 75-kDa form. Synthesis and processing of gp75 was rapid (T1/2 less than 30 min), and early steps in processing were required for efficient export of gp75 to melanosomes. Fully processed mature gp75 was quite stable (T1/2 = 22-24 h) in the melanosome. Digestion of high-mannose carbohydrate chains with endo-beta-N-acetylglucosaminidase H revealed two alternative processed forms of gp75 that differed in the number or composition of complex-type carbohydrate chains. The rate of synthesis and movement through intracellular membrane compartments was the same for both glycosylated forms. Studies with inhibitors of steps in oligosaccharide processing showed that alternative forms of gp75 were generated during trimming reactions by mannosidase IA/IB and that further maturation resulted in the two mature forms of gp75. We propose that the kinetics of biosynthesis and processing reflect events in the biogenesis and maturation of melanosomes.  相似文献   

9.
Precursor proteins from Neurospora crassa were correctly processed by a matrix extract from Vicia faba and cauliflower mitochondria. Processing yielded mature protein of the same molecular mass as mature Neurospora protein. The processing activity has two components. One is antigenically related to and of the same molecular mass as the processing enhancing protein of Neurospora. The second component was not recognized by antibody to the matrix processing protease from Neurospora mitochondria. The second component also houses the protease activity. Similar results were obtained using precursors to both the F1 beta subunit of the mitochondrial F0F1 ATPase and subunit V of the Rieske FeS complex from Neurospora. The beta subunit of the F0F1 ATPASE was processed to the mature form. Subunit V of the Rieske FeS complex was processed to the intermediate form only. Additional processing seen during import into plant mitochondria is not catalyzed by these proteins.  相似文献   

10.
J A Schmidt  R Bomford 《Cytokine》1991,3(3):240-245
The exact sequence of events during processing of human interleukin-1 beta (IL-1 beta) and the fate of the N-terminal region are unknown. We have used anti-peptide sera specific for the precursor and mature regions of IL-1 beta to study biosynthesis. These were raised against peptides corresponding to amino acids 1-15, 17-32, and 43-54 of the precursor and a peptide corresponding to the C-terminal 33 amino acids of mature human IL-1 beta. Antiserum to the mature region peptide immunoprecipitated the 35-kD precursor from cell lysates and 17-kD mature IL-1 beta and a 31-kD protein from the culture supernatants from radiolabeled human peripheral blood monocytes stimulated with lipopolysaccharide (LPS). Antisera to peptides from the precursor region also immunoprecipitated the 35-kD IL-1 beta precursor but not the 31-kD or 17-kD forms. Of the precursor-specific sera, only antiserum to amino acids 1-15 specifically recognized any other proteins; a peptide of 18 kD and a low molecular weight peptide, both of which accumulated in the medium. The 18-kD protein was not recognized by any of the other antisera and is unlikely to be the N-terminal region of the precursor removed during processing. Pulse-chase experiments indicated that the 31-kD protein could be a processing intermediate and also that it was itself an end product along with full-length precursor. Only 17-kD mature IL-1 beta had biological activity.  相似文献   

11.
Processing of pulmonary surfactant protein B by napsin and cathepsin H   总被引:10,自引:0,他引:10  
Surfactant protein B (SP-B) is an essential constituent of pulmonary surfactant. SP-B is synthesized in alveolar type II cells as a preproprotein and processed to the mature peptide by the cleavage of NH2- and COOH-terminal peptides. An aspartyl protease has been suggested to cleave the NH2-terminal propeptide resulting in a 25-kDa intermediate. Napsin, an aspartyl protease expressed in alveolar type II cells, was detected in fetal lung homogenates as early as day 16 of gestation, 1 day before the onset of SP-B expression and processing. Napsin was localized to multivesicular bodies, the site of SP-B proprotein processing in type II cells. Incubation of SP-B proprotein from type II cells with a crude membrane extract from napsin-transfected cells resulted in enhanced levels of a 25-kDa intermediate. Purified napsin cleaved a recombinant SP-B/EGFP fusion protein within the NH2-terminal propeptide between Leu178 and Pro179, 22 amino acids upstream of the NH2 terminus of mature SP-B. Cathepsin H, a cysteine protease also implicated in pro-SP-B processing, cleaved SP-B/EGFP fusion protein 13 amino acids upstream of the NH2 terminus of mature SP-B. Napsin did not cleave the COOH-terminal peptide, whereas cathepsin H cleaved the boundary between mature SP-B and the COOH-terminal peptide and at several other sites within the COOH-terminal peptide. Knockdown of napsin by small interfering RNA resulted in decreased levels of mature SP-B and mature SP-C in type II cells. These results suggest that napsin, cathepsin H, and at least one other enzyme are involved in maturation of the biologically active SP-B peptide.  相似文献   

12.
Import, targeting, and processing of a plant polyphenol oxidase.   总被引:14,自引:4,他引:10  
A tomato (Lycopersicon esculentum L.) gene encoding a precursor of polyphenol oxidase (PPO) was transcribed and translated in vitro. The import, targeting, and processing of the [35S]methionine-labeled precursor protein (pPPO) were studied in isolated chloroplasts. The protein was routed to the thylakoid lumen in two steps. The 67-kD precursor was first imported into the stroma in an ATP-dependent step. It was processed to a 62-kD intermediate by a stromal peptidase. Translocation into the lumen was light dependent and involved processing of the 62-kD to the 59-kD mature form. The mature polypeptide was soluble in the lumen and not bound to thylakoids. This two-step targeting pattern was observed in plastids from a variety of plants including pea (Pisum sativum L.), tomato, and maize (Zea mays L.). The ratio between the intermediate and mature forms observed depended on the plant species, leaf age, growth conditions, and illumination regime to which the plants had been subjected. Cu2+ was not required for pPPO import or processing. Furthermore, low concentrations of Cu2+ (1-5 microM) markedly inhibited the first import step. Tentoxin specifically inhibited pPPO import, leaving the precursor bound to the envelope membrane. The two-step routing of pPPO into chloroplasts, typical of thylakoid lumen proteins, is consistent with the two-domain structure of the transit peptide and appears to be a feature of all plant PPO genes isolated so far. No evidence was found for unorthodox routing mechanisms, which have been suggested to be involved in the import of plant PPOs. The two-step routing may account for some of the multiplicity of PPO observed in vivo.  相似文献   

13.
Proproteins of various vacuolar proteins are post-translationally processed into mature forms by the action of a unique vacuolar processing enzyme. If such a processing enzyme is transported to vacuoles together with proprotein substrates, the enzyme must be a latent form. Immunocytochemical localization of a vacuolar processing enzyme, a 37-kD cysteine proteinase, in the endosperm of maturing castor bean seeds places the enzyme in the vacuolar matrix, where a variety of proproteins is also present. To characterize a molecular structure of vacuolar processing enzyme, we isolated a cDNA for the enzyme. Deduced primary structure of a 55-kD precursor is 33% identical to a putative cysteine proteinase of the human parasite Schistosoma mansoni. The precursor is composed of a signal peptide, a 37-kD active processing enzyme domain, and a propeptide fragment. Although the precursor expressed in Escherichia coli has no vacuolar processing activity, a 36-kD immunopositive protein expressed in E. coli is active. These results suggest that the activation of the vacuolar processing enzyme requires proteolytic cleavage of a 14-kD C-terminal propeptide fragment of the precursor.  相似文献   

14.
Chemical cross-linking and gel permeation chromatography were used to examine early events in the biogenesis of class I histocompatibility molecules. We show that newly synthesized class I heavy chains associate rapidly and quantitatively with an 88-kD protein in three murine tumor cell lines. This protein (p88) does not appear to possess Asn-linked glycans and it is not the abundant ER protein, GRP94. The class I-p88 complex exists transiently (t1/2 = 20-45 min depending on the specific class I heavy chain) and several lines of evidence suggest that p88 dissociates from the complex while still in the ER. Dissociation is not triggered upon binding of beta 2-microglobulin to the heavy chain (t1/2 = 2-5 min). However, the rate of dissociation does correlate with the characteristic rate of ER to Golgi transport for the particular class I molecule studied. Consequently, dissociation of p88 may be rate limiting for ER to Golgi transport. Class I molecules bind antigenic peptides, apparently in the ER, for subsequent presentation to cytotoxic T lymphocytes at the cell surface. p88 could promote peptide binding or it may retain class I molecules in the ER during formation of the ternary complex of heavy chain, beta 2-microglobulin, and peptide.  相似文献   

15.
16.
1. The proteolytic processing sites of human lysosomal aspartic protease cathepsin D at which the intermediate single-chain form was converted into the mature two-chain form were determined. 2. The two chains were isolated by reversed-phase HPLC in order to investigate the cleavage sites of the enzyme. 3. Protein sequencing of the heavy chain, which was presumed to be derived from the C-terminal side in the single-chain enzyme, gave an N-terminal Leu 105. In addition, it revealed that there were also minor sequences, which commenced with Gly 106 and Gly 107. 4. A small C-terminal peptide was isolated from the light chain, which had been digested with two kinds of exogenous proteases. Sequence determination of this peptide, which was characterized as a nonapeptide by mass spectrometry, suggested that the C-terminus of the light chain was Ser 98. 5. These results indicate that a Ser 98-Ala 99 bond and an Ala 104-Leu 105 bond are cleaved to release 6 amino acid residues between the two chains.  相似文献   

17.
The luminal surface of mammalian urothelium is covered with numerous plaques (also known as the asymmetric unit membrane or AUM) composed of semi-crystalline, hexagonal arrays of 12-nm protein particles. Despite the presumed importance of these plaques in stabilizing the urothelial surface during bladder distention, relatively little is known about their protein composition. Using a mouse mAb, AE31, we have identified a 27-kD protein that is urothelium-specific and is differentially expressed in superficial umbrella cells. This protein (pI approximately 5.8) partitions into the detergent phase during Triton X-114 phase separation. Pulse-chase experiments using cultured bovine urothelial cells showed that this protein is synthesized as a 32-kD precursor that is processed through a 30-kD intermediate, to the mature 27-kD form. In cytoplasmic vesicles containing immature AUM, the AE31 epitope is detected in patches on the cytoplasmic side, but in mature, apical AUM it is detected exclusively on the luminal side. This suggests an unusual translocation of the AE31 epitope during AUM maturation; more data are required, however, to substantiate this interpretation. Immunoaffinity purification of the 27-kD protein results in the copurification in approximately molar ratio of a 15-kD protein, as well as a small and variable amount of a 47-kD protein. Immunoblotting data indicate that these three proteins are immunologically distinguishable. This copurified 15-kD protein is relative basic (pI approximately 8.0). Like the 27-kD protein, it is urothelium-specific and is present mainly in the umbrella cells. Together, our data indicate that a 27-kD protein is urothelial plaque-associated (uroplakin I). Based on complex formation data, we provisionally name the 15-kD protein uroplakin II; additional data will be required to determine whether this and the 47-kD protein are integral parts of AUM. The identification of these AUM-associated and -related proteins, plus the availability of a culture system capable of synthesizing and processing some of these molecules, offer new opportunities for studying the detailed structure, assembly, and function of asymmetrical unit membrane.  相似文献   

18.
To analyze the processing of extracellular enzymes of Bacillus subtilis, an NH2-terminally extended hybrid alpha-amylase [pTUBE638-alpha-amylase (E24)] was purified from the periplasm of E. coli(pTUBE638) as the substrate for the in vitro processing reaction, in which a 21-amino-acid extra-peptide was added at the NH2-terminus of the mature thermostable alpha-amylase. The extended peptide in pTUBE638-alpha-amylase (E24) was completely processed by the extracellular alkaline protease of B. subtilis alone at pH 7.5 to 10.0. The processing was inhibited by 2 mM PMSF. In contrast, the neutral protease did not process the extended peptide. The processing activity of the purified alkaline protease was fully active in 100 mM phosphate and glycine-NaCl-NaOH buffer while it was partially active in 100 mM Tris-HCl or MOPS buffer. The optimum pH of the activity ranged from 8.0 to 9.0, although the optimum pH of the alkaline protease activity toward casein and Azocoll was 10.5. The NH2-terminal amino acid sequences of the enzymes processed in vitro coincided with those of the mature extracellular thermostable alpha-amylases in the culture medium of B. subtilis (pTUBE638). The appearance of the processing activity of alkaline protease was correlated with the changes of the pH in the culture medium.  相似文献   

19.
Recombinant forms of the dengue 2 virus NS3 protease linked to a 40-residue co-factor, corresponding to part of NS2B, have been expressed in Escherichia coli and shown to be active against para-nitroanilide substrates comprising the P6-P1 residues of four substrate cleavage sequences. The enzyme is inactive alone or after the addition of a putative 13-residue co-factor peptide but is active when fused to the 40-residue co-factor, by either a cleavable or a noncleavable glycine linker. The NS4B/NS5 cleavage site was processed most readily, with optimal processing conditions being pH 9, I = 10 mm, 1 mm CHAPS, 20% glycerol. A longer 10-residue peptide corresponding to the NS2B/NS3 cleavage site (P6-P4') was a poorer substrate than the hexapeptide (P6-P1) para-nitroanilide substrate under these conditions, suggesting that the prime side substrate residues did not contribute significantly to protease binding. We also report the first inhibitors of a co-factor-complexed, catalytically active flavivirus NS3 protease. Aprotinin was the only standard serine protease inhibitor to be active, whereas a number of peptide substrate analogues were found to be competitive inhibitors at micromolar concentrations.  相似文献   

20.
SH-EP is a vacuolar cysteine proteinase from germinated seeds of Vigna mungo. The enzyme has a C-terminal propeptide of 1 kDa that contains an endoplasmic reticulum (ER) retention signal, KDEL. The KDEL-tail has been suggested to function to store SH-EP as a transient zymogen in the lumen of the ER, and the C-terminal propeptide was thought to be removed within the ER or immediately after exit from the ER. In the present study, a protease that may be involved in the post-translational processing of the C-terminal propeptide of SH-EP was isolated from the microsomes of cotyledons of V. muno seedlings. cDNA sequence for the protease indicated that the enzyme is a member of the papain superfamily. Immunocytochemistry and subcellular fractionation of cotyledon cells suggested that the protease was localized in both the ER and protein storage vacuoles as enzymatically active mature form. In addition, protein fractionations of the cotyledonary microsome and Sf9 cells expressing the recombinant protease indicated that the enzyme associates with the microsomal membrane on the luminal side. The protease was named membrane-associated cysteine protease, MCP. The possibility that a papain-type enzyme, MCP, exists as mature enzyme in both ER and protein storage vacuoles will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号