首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the present study was to survey the growth and astaxanthin production of E17, an astaxanthin-rich mutant of Chlorella zofingiensis, through feeding the low-cost carbon source cane molasses. In heterotrophic batch cultivation, E17 fed with pretreated molasses achieved biomass (1.79 g L?1 day?1) and astaxanthin (1.99 mg L?1 day?1) productivities comparable to those with glucose, which were about 2- and 2.8-fold of those fed with untreated molasses, respectively. Molasses-induced astaxanthin accumulation may be attributed to the elicited expression of carotenogenic genes, in particular the genes specifically responsible for the ketolation and hydroxylation of β-carotene to form astaxanthin. A two-stage fed-batch strategy was employed to grow E17 and induce astaxathin accumulation, resulting in 45.6 g L?1 biomass and 56.1 mg L?1 astaxanthin, the highest volumetric astaxanthin yield ever reported for this alga. In addition, the astaxanthin production by E17 was tested with a semi-continuous culture method, where the directly diluted raw molasses (giving 5 g L?1 sugar) was used as the carbon source. Little growth inhibition of E17 was observed in the semi-continuous culture with a biomass productivity of 1.33 g L?1 day?1 and an astaxanthin productivity of 0.83 mg L?1 day?1. The mixotrophic semi-continuous cultures enhanced the biomass and astaxanthin productivities by 29.3 % and 42.2 %, respectively. This study highlights the potential of using the industrially cheap cane molasses towards large-scale cost-saving production of the high-value ketocarotenoid astaxanthin.  相似文献   

2.
Non-motile cells of Haematococcus pluvialis grow slowly, whereas motile cells grow fast and divide frequently. Cultivation from non-motile cells to motile cells of H. pluvialis was implemented to promote semi-continuous production. When old cultures which consist of non-motile cells were inoculated in fresh medium with an inoculation amount less than 15%, zoospores were produced in the non-motile cells and developed into motile cells, as the concentration of astaxanthin inducer in the medium was below the threshold value. This process was accomplished within 3 days after inoculation. Furthermore, enhancing KNO3 content to 1200 mg L?1 or reducing light intensity to 20 μmol photons m?2?s?1 could increase growth during the late culturing period of H. pluvialis and postpone the next round of transformation from motile cells to non-motile cells. A semi-continuous cultivation method for H. pluvialis from non-motile cells to motile cells is proposed in order to regulate the life cycle and promote industrial production. This cultivation mode shortens the inoculum cultivation stage and simplifies the production process of H. pluvialis, showing considerable commercial potential.  相似文献   

3.
The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high‐value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark‐grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L?1 day?1) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark‐grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high‐light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L?1 day?1 by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark‐grown cells under photo‐induction conditions. Biotechnol. Bioeng. 2016;113: 2088–2099. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
  相似文献   

4.
Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q e) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q e value from the cell concentration (q e1D) obtained was 13.5 × 10?8 μE cell?1 s?1, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q e2D) and fresh weight (q e3D) were determined to be 195 μE m?2 s?1 and 10.5 μE g?1 s?1 for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22 % over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q e based on fresh weight showed the highest astaxanthin productivity (22.8 mg L?1 day?1), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.  相似文献   

5.
Nowadays, microalgae are discussed as a promising feedstock for biodiesel production. The present study examines the possibility of enhancement of fatty acid productivity of Scenedesmus obliquus by modifications of the culture medium composition. The effect of different concentrations of sodium bicarbonate, salinity, potassium nitrate, glycerol and sugarcane molasses on the enhancement of biomass and esterified fatty acids production was studied. NaHCO3 caused an increase in the biomass productivity at low concentrations (0.5 g L?1), while negatively affected fatty acid productivity at all tested concentrations. Increase of salinity enhanced both biomass and fatty acid productivity. The optimum NaCl concentration and sea water ratio were 0.94 g L?1 and 25 % which resulted in 56 and 39 % increase in fatty acid productivity, respectively. Nitrogen deficiency showed increase in fatty acid content by 54 % over control but fatty acid productivity was decreased as a result of growth inhibition. Nitrogen-free cultures and cultures treated with ?50 % concentrations of KNO3 showed 96 and 42 % decrease in EFA productivity, respectively, as compared with the control. Addition of 0.05 and 0.1 M of glycerol increased the biomass productivity by 6 and 5 %, respectively but showed no significant effect on fatty acid productivity as a result of decrease in fatty acid content. Finally, usage of sugarcane molasses stimulated both biomass and fatty acid content. The increase in fatty acid productivity was 32, 65 and 73 % above the control level at 1, 3 and 5 g L?1 of sugarcane molasses, respectively.  相似文献   

6.
The present study evaluated the impact of rac-GR24 on biomass and astaxanthin production under phenol stress coupled with biodiesel recovery from Haematococcus pluvialis. Phenol supplementation showed negative impact on growth, where the lowest biomass productivity of 0.027 g L-1 day−1 was recorded at 10 µM phenol, while 0.4 µM rac-GR24 supplementation showed the highest recorded biomass productivity of 0.063 g L-1 day−1. Coupling 0.4 µM rac-GR24 at different phenol concentrations confirmed the potential of rac-GR24 to mitigate the toxic effect of phenol by enhancing yield of PSII yield, RuBISCo activity, and antioxidant efficiency, which resulted in improved phenol phycoremediation efficiency. In addition, results suggested a synergistic action by rac-GR24 supplementation under phenol treatment where rac-GR24 enhanced lipid accumulation, while phenol enhanced astaxanthin production. Dual supplementation of rac-GR24 and phenol showed the highest recorded FAMEs content, which was 32.6% higher than the control, with improved biodiesel quality. The suggested approach could enhance the economic feasibility of triple-purpose application of microalgae in wastewater treatment, astaxanthin recovery, and biodiesel production.  相似文献   

7.
The addition of bicarbonate (NaHCO3; 0, 1, or 2 g L?1) to microalgal cultures has been evaluated for two species (Tetraselmis suecica and Nannochloropsis salina) in respect of growth and biochemical composition. In batch cultures, addition of bicarbonate (1 g L?1) resulted in significantly (P?<?0.05) higher final mean cell abundances for both species. No differences in specific growth rates (SGRs) were recorded for T. suecica between treatments; however, increasing bicarbonate addition decreased SGR values in N. salina cultures. Bicarbonate addition (1 g L?1) significantly improved nitrate utilisation from the external media and photosynthetic efficiency (F v /F m ) in both species. For both T. suecica and N. salina, bicarbonate addition significantly increased the cellular concentrations of total pigments (3,432–3,587 and 19–37 fg cell?1, respectively) compared to cultures with no additional bicarbonate (1,727 and 11 fg cell?1, respectively). Moreover, final concentrations of total cellular fatty acids in T. suecica and N. salina cultures supplemented with 2 g L?1 bicarbonate (7.6?±?1.2 and 1.8?±?0.1 pg cell?1, respectively) were significantly higher than those cells supplemented with 0 or 1 g L?1 bicarbonate (3.2–3.5 and 0.9–1.0 pg cell?1, respectively). In nitrate-deplete cultures, bicarbonate addition caused species-specific differences in the rate of cellular lipid production, rates of change in fatty acid composition and final lipid levels. In summary, the addition of sodium bicarbonate is a viable strategy to increase cellular abundance and concentrations of pigments and lipids in some microalgae as well as the rate of lipid accumulation in nitrate-deplete cultures.  相似文献   

8.
For efficient astaxanthin production from the culture of green microalga, Haematococcus pluvialis, a two-stage mixotrophic culture system was established with stepwise increased light irradiance. By perfusion process, high density biomass (2.47 g/L) was achieved during the vegetative stage due to no detrimental effect of inhibitory metabolites, which was 3.09 and 1.67 times higher than batch and fed-batch processes, respectively. During the induction stage, biomass and astaxanthin were subsequently produced to the very high level 12.3 g/L and 602 mg/L, under stepwise increased light irradiance (150–450 μE/m2/s), respectively. These results indicate that the combinatorial approach of perfusion culture during the vegetative stage and stepwise light irradiation during the induction stage is a promising strategy for the simultaneous production of high concentration of biomass and astaxanthin in microalgae including H. pluvialis.  相似文献   

9.
Abstract

The study of microalgal culture has been growing in recent decades, because the cellular structure of microalgae has diverse highly valuable metabolites that have attract attention of numerous companies and research groups. The pigment astaxanthin is considered one of the most powerful antioxidants in nature. The microalga Haematococcus pluvialis was proposed as one of the best natural astaxanthin sources, because it can accumulate high amount of the pigment. In this work, we studied different stress treatments on H. pluvialis growth cultures as well as astaxanthin production under autotrophic growth conditions. The results showed that extending nitrogen starvation before increasing radiation intensity up to 110?μmol photons m?2 s?1 during late the palmella cell phase incremented the astaxanthin concentration up to 2.7% of dry biomass with an efficient light energy utilization during the stress stage.  相似文献   

10.
Efforts to increase the productivity of microalgal cultures have been focused on the improvement of photobioreactors, but little attention has been paid to the nutritional requirements of microalgae in order to improve culture media formulation. In this study, the main goal was obtaining a high productivity for Tetraselmis suecica (Chlorophyta) in semicontinuous culture by adding magnesium (Mg), silicon (Si), and strontium (Sr) at concentrations from 0.01 to 10 mM; at the time, the effect on steady-state cell density, biochemical composition, and antioxidant activity of T. suecica was evaluated. Because productivity is higher in high-density cultures, the work was focused many times to cell density. Mg (3 mM) and Sr (0.1 mM) added separately reached the highest steady-state cell density (7.0?×?106?±?0.4 cells mL?1) in comparison to control (4.2?±?0.1 cells mL?1), but simultaneous addition had a synergic effect, achieving 8.7?×?106?±?0.6 cells mL?1. Silicon (3 mM) significantly affected the steady-state cell density, reaching 6.0?±?0.3 cells mL?1 and increased the cell ash-free dry weight, reaching 127?±?7.9 pg cell?1 in comparison to control (102.7?±?5.0 pg cell?1), resulting in an ash-free dry weight productivity of 0.75?±?0.07 g?L?1 day?1. The highest fatty acids content and antioxidant activity, measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method were obtained with Sr 10 mM. Sr treatments showed a high correlation (R 2?=?0.98) between DPPH inhibition and polyphenolic content, explaining its high antioxidant activity. Therefore, the addition of Mg, Si, and Sr to culture medium of T. suecica is recommended to achieve high steady-state cell density in semicontinuous cultures.  相似文献   

11.
The microalga Nannochloropsis sp. was cultured under different initial population densities (IPDs) ranging from 0.11 to 9.09 g L?1. The IPD affected the biomass and lipid accumulation significantly. The algal cultured with higher IPD resulted higher biomass concentration (up to 13.07 g L?1) in 10 days growth. The biomass productivity with 0.98 g L?1 IPD was 0.75 g L?1 d?1 which was higher than that of other IPDs. For IPDs ranging from 0.11 to 0.98 g L?1, with the increase of IPD, the biomass productivity increased, while for IPD over 0.98 g L?1, the biomass productivity decreased. Lipid content of the algal culture started with 0.11 g L?1 IPD reached to 42 % of dry weight. But with the increase of IPD, the lipid content decreased. Lipid composition was analyzed using thin layer chromatography coupled with flame ionization detection (TLC/FID). Seven lipid classes were identified and quantified. The main reserve lipid, triacylglyceride (TAG), accumulated under all different IPD conditions. However, with the increasing IPD values, TAG content decreased from 59.1 to 23.5 % of the total lipids. Based on these results, to obtain the maximal biomass productivity and lipid productivity of Nannochloropsis sp. in mass cultivation systems, it is necessary to select an appropriate IPD.  相似文献   

12.
Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L?1 ethanol with a productivity of 0.17 ± 0.00 g L?1 h?1, while xylose plus 3 g L?1 CaCO3 resulted in the production of 24.68 ± 0.75 g L?1 ethanol with a productivity of 0.21 ± 0.01 g L?1 h?1. Use of xylose plus glucose in combination with 3 g L?1 CaCO3 resulted in the production of 47.37 ± 0.55 g L?1 ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L?1 h?1. These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L?1 CaCl2 resulted in the production of 44.84 ± 0.28 g L?1 ethanol with a productivity of 0.37 ± 0.02 g L?1 h?1. Use of glucose plus 3 g L?1 CaCO3 resulted in the production of 57.39 ± 1.41 g L?1 ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.  相似文献   

13.
The green alga Haematococcus pluvialis is the current best source of natural astaxanthin, a high-value carotenoid. Traditionally, the production process of astaxanthin by this algae is achieved by a two-stage system: during the first stage, vegetative “green” cells are produced and then converted, in the second stage, into cysts that accumulate astaxanthin. In this work, a medium screening strategy based on the mixing of a three-component hydroponic fertilizer was applied to identify a new formulation optimized for the vegetative stage. A maximal and high cell density of 2?×?106 cells mL?1 was obtained in a medium containing a high level of phosphate relative to nitrate, resulting in a N/P ratio much lower than commonly used media for H. pluvialis. In this medium, cells remained at the vegetative and motile stage during a prolonged period of time. Both high cell density culture and motile stage persistence was proved to be related to the N/P feature of this medium. We conclude that the macrozoid stage of H. pluvialis is favored under high-P and low-N supply and that low-cost hydroponic fertilizers can be successfully used for achieving high density cultures of vegetative cells of H. pluvialis.  相似文献   

14.
The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L?1 day?1), lipid productivity (80.7 mg lipid·L?1 day?1) and lipid concentration (252 mg lipid·L?1) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.  相似文献   

15.
Clostridium beijerinckii optinoii is a Clostridium species that produces butanol, isopropanol and small amounts of ethanol. This study compared the performances of batch and continuous immobilized cell fermentations, investigating how media flow rates and nutritional modification affected solvent yields and productivity. In 96-h batch cultures, with 80 % of the 30 g L?1 glucose consumed in synthetic media, solvent concentration was 9.45 g L?1 with 66.0 % as butanol. In a continuous fermentation using immobilized C. beijerinckii optinoii cells, also with 80 % of 30 g L?1 glucose utilization, solvent productivity increased to 1.03 g L?1 h?1. Solvent concentration reached 12.14 g L?1 with 63.0 % as butanol. Adjusting the dilution rate from 0.085 to 0.050 h?1 to allow extended residence time in column was required when glucose concentration in fresh media was increased from 30 to 50 g L?1. When acetate was used to improve the buffer capacity in media, the solvent concentration reached 12.70 on 50 g L?1 glucose. This continuous fermentation using immobilized cells showed technical feasibility for solvent production.  相似文献   

16.
The optimal culture medium for the production of flavonoid compounds from Orostachys cartilaginea V. N. Boriss. calluses was studied. In callus cultures of O. cartilaginea, the flavonoid monomer content, in decreasing order was kaempferol-3-O-rutinoside (Kp-3-rut), quercetin 3-O-glucoside (Qc-3-glc), epicatechin gallate (Ecg), kaempferide (Ke), and quercetin (Qc). The results of the uniform design experiment indicated that the production of Qc, Ke, Qc-3-glc, Kp-3-rut, and total flavonoids were satisfactory in callus grown on full salt strength (1×) of Murashige and Skoog (MS) medium supplemented with 3.5 mg L?1 6-benzylaminopurine (BA) and 0.1 mg L?1 1-naphthalene acetic acid (NAA). By contrast, only Ecg was found in callus grown on 0.75× MS medium supplemented with 1.5 mg L?1 BA and 0.3 mg L?1 NAA. A phosphate concentration of 1.25 mM in the MS medium favored the production of Qc and Ke, whereas 0.75 mM phosphate was optimal for the production of Ecg, Qc-3-glc, Kp-3-rup, and total flavonoids. The NH4 +/NO3 ? ratios of 30/30 mM in the MS medium promoted Ke, Ecg, Qc-3-glc, Kp-3-rup, and total flavonoid production. However, a NH4 +/NO3 ? ratio of 20/40 mM enhanced Qc production. The effect of sucrose concentrations on the accumulation of different flavonoid monomers was comparatively more regular. The flavonoid content increased as the sucrose concentration increased from 20 to 40 g L?1, peaked at 40 g L?1, and decreased at concentrations greater than 40 g L?1. Therefore, 40 g L?1 sucrose was optimal for the production of the five flavonoid monomers and total flavonoids. The present findings demonstrate the possibility of producing flavonoid compounds from O. cartilaginea callus.  相似文献   

17.
Light source can affect the stomata opening, photosynthesis process, and pigment content in microalgae cells. In this study, growth rate, chlorophyll a (chl a) content, and electrogenic capability of Desmodesmus sp. A8 were investigated under incandescent and fluorescent lamps. Growth rate, productivity, and chl a content of strain A8 exposed to incandescent light were recorded as 0.092 ± 0.010 day?1, 0.019 ± 0.008 g L?1 day?1, and 15.10 ± 1.40 mg L?1, which decreased to 0.086 ± 0.006 day?1, 0.012 ± 0.004 g L?1 day?1, and 10.06 ± 1.59 mg L?1, respectively, under fluorescent light. The stable current density of bioelectrochemical systems inculcated with strain A8 under incandescent and fluorescent lamps were 249.76 and 158.41 mA m?2 at ?0.4 V vs. Ag/AgCl, coupling with dissolved oxygen within biofilm decreasing from 15.91 to 10.80 mg L?1. This work demonstrated that illuminating microalgae under an incandescent lamp can improve biomass production and electrogenic capabilities.  相似文献   

18.
The integration of oleaginous microalgae cultivation with high-value products is considered a low-cost approach for manufacturing algae-based biodiesel. The objective of this study was to investigate the potential of using Fe(II) to produce fatty acids and astaxanthin in mixotrophic Chromochloris zofingiensis. Fatty acid biosynthesis was less sensitive than astaxanthin formation to the changes in Fe2+ concentrations. However, the enhancement and inhibition of fatty acids formation were concomitant with an increase and a decrease in the production of astaxanthin, respectively. The highest contents of astaxanthin and total fatty acids were simultaneously obtained at 0.2 mM Fe2+ with the corresponding values of 2.2 mg g?1 (i.e., 25.8 mg l?1) and 41.8 % dry weight (i.e., 5 g l?1).  相似文献   

19.
Bio-fixation of carbon dioxide (CO2) by microalgae has been recognised as an attractive approach to offset anthropogenic emissions. Biological carbon mitigation is the process whereby autotrophic organisms, such as microalgae, convert CO2 into organic carbon and O2 through photosynthesis; this process through respiration produces biomass. In this study Dunaliella tertiolecta was cultivated in a semicontinuous culture to investigate the carbon mitigation rate of the system. The algae were produced in 1.2-L Roux bottles with a working volume of 1 L while semicontinuous production commenced on day 4 of cultivation when the carbon mitigation rate was found to be at a maximum for D. tertiolecta. The reduction in CO2 between input and output gases was monitored to predict carbon fixation rates while biomass production and microalgal carbon content are used to calculate the actual carbon mitigation potential of D. tertiolecta. A renewal rate of 45 % of flask volume was utilised to maintain the culture in exponential growth with an average daily productivity of 0.07 g L?1 day?1. The results showed that 0.74 g L?1 of biomass could be achieved after 7 days of semicontinuous production while a total carbon mitigation of 0.37 g L?1 was achieved. This represented an increase of 0.18 g L?1 in carbon mitigation rate compared to batch production of D. tertiolecta over the same cultivation period.  相似文献   

20.
20-Hydroxyecdysone is one of the most common ecdysteroids in plants with potential therapeutic applications. In this study, cell suspension cultures of Achyranthes aspera were raised in shake flasks to investigate the production of 20-hydroxyecdysone. The quantification and characterization of 20-hydroxyecdysone in the cultures were done by High performance liquid chromatography (HPLC) and Liquid Chromatography-quadrupole time-of- flight mass spectrometry (LC-Q-TOF) analyses. For raising the suspension, calli initiated from in vitro grown leaf explants were cultured in liquid Murashige and Skoog (MS) medium augmented with combinations of 2, 4-dichlorophenoxyacetic acid (1 mg L?1) and α-naphthaleneacetic acid (1 mg L?1). Maximum growth index of the cell suspension was 9.9, which was achieved during 20th day of culture (final phase of exponential growth). At this stage, the biomass accumulated was 1.09 ± 0.09 g dry weight (DW) and the 20-hydroxyecdysone concentration was 0.24 mg g?1 DW. Eliciting the cultures with 0.6 mM Methyl jasmonate for 6 days; enhanced the production of 20-hydroxyecdysone production to 0.35 mg g?1 DW. By augmenting the cultures with the precursors namely cholesterol (10 mg L?1) and 7-dehydrocholesterol (10 mg L?1), production of 20-hydroxyecdysone was boosted to 0.31 mg g?1 DW and 0.28 mg g?1 DW respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号