首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, chlorophyll fluorescence parameters (?F/F m′, F v/F m) and oxygen evolution of female vegetative tissues of Porphyra katadai var. hemiphylla in unisexual culture (FV) and in mixed culture with male vegetative tissues (FV-M) were followed at 5–20 °C, 10 and 80 μmol photons m?2 s?1. The formation of reproductive tissues was closely correlated with decreasing photosynthetic activities. At the same temperature the tissues cultured under 80 μmol photons m?2 s?1 showed a greater extent of maturation than those under 10 μmol photons m?2 s?1, and their decrease in photosynthesis was also larger. Under the same light intensity the extent of maturation increased with increasing temperature, and both cultures showed higher values of ?F/F m′ and F v/F m at 10 and 15 °C, while their oxygen evolution became negative at 15–20 °C during the later period. Under the same culture condition the maturation of FV-M culture was relatively faster than that of FV culture, while their photosynthetic activity, especially ?F/F m′, was lower.  相似文献   

2.
In order to illustrate the physiological variation of different generations and different thallus parts of Saccharina japonica, physiological parameters such as maximum and effective PSII photochemical efficiency, nutrient uptake, and elemental composition were determined in the laboratory. Photosynthetic analysis in different generations indicated that, although gametophytes had higher pigment contents than the sporophyte, they had lower values of F v/F m and ΔF/Fm. The highest Chl a/Chl c ratio was found in sporophyte generation (3.98?±?0.01) and in the basal part of fresh thallus (2.66?±?0.02). The sporophyte had significantly higher values of nitrate uptake but lower values of phosphorus uptake than the gametophytes. The contents of nitrogen and carbon as well as C/N in gametophytes were significantly higher than those in sporophytes. In addition, the basal part of the S. japonica thallus had the highest C content (22.31?±?1.50 %) but the lowest N content (2.02?±?0.16 %), as well as the highest value of C/N (11.02?±?0.34).  相似文献   

3.
The effect of temperature, light-spectrum, desiccation and salinity gradients on the photosynthesis of a Japanese subtidal brown alga, Sargassum macrocarpum (Fucales), was determined using a pulse amplitude modulation-chlorophyll fluorometer and dissolved oxygen sensors. Temperature responses of the maximum (Fv/Fm in darkness) and effective (ΔF/Fm at 50 μmol photons m−2 s−1; = ΦPSII) quantum yields during 6-day culture (4–36°C) remained high at 12–28°C, but decreased at higher temperatures. Nevertheless, ΔF/Fm also dropped at temperatures below 8°C, suggesting light sensitivity under chilling temperatures because Fv/Fm remained high. Photosynthesis–irradiance responses at 24°C under red (660 nm), green (525 nm), blue (450 nm) and white light (metal halide lamp) showed that maximum net photosynthesis under blue and white light was greater than under red and green light, indicating the sensitivity and photosynthetic availability of blue light in the subtidal light environment. In the desiccation experiment, samples under aerial exposure of up to 8 h under dim-light at 24°C and 50% humidity showed that ΔF/Fm quickly declined after more than 45 min of emersion; furthermore, ΔF/Fm also failed to recover to initial levels even after 1 day of rehydration in seawater. Under the emersion state, the ΔF/Fm remained high when the relative water content (RWC) was greater than 50%; in contrast, it quickly dropped when the RWC was less than 50%. When the RWC was reduced below 50%, ΔF/Fm did not return to initial levels, regardless of subsequent re-hydration, suggesting a low capacity of photosynthesis to recover from desiccation. The stenohaline response of photosynthesis under 3-day culture is evident, given that ΔF/Fm declined when salinity was beyond 20–40 psu. Adaptation to subtidal environments in temperate waters of Japan can be linked to these traits.  相似文献   

4.
Pigment mutants were used as genetic markers to study the early development and morphogenesis of blades in four species of Porphyra. In Porphyra haitanensis, P. yezoensis, and P. oligospermatangia, the first two divisions are transverse during conchospore germination, yielding four cells arranged in a line. These species are representative of linear development pattern in Porphyra. Resulting in blades with color sectors vertically arranged. In P. katadai var. hemiphylla, the first division is transverse and the upper cell divides vertically forming two side-by-side cells, and its blades are derived mostly from the upper cell showing a bilateral development pattern with two lateral parts of different colors. In this type of germination, most or the entire blade is derived from the upper cells. Some fronds of P. katadai var. hemiphylla developed in linear pattern. In addition, 9.3% of the conchospore germlings of linear development were produced at 10°C, 15.3% at 15°C, and 38.0% at 20°C for conchospore germlings of P. katadai var. hemiphylla. More linear development occurred at higher temperatures. The results revealed general trends of early developmental patterns and morphogenesis of blades within the genus of Porphyra. Developmental patterns and morphogenesis of blades are under the influence of temperatures.  相似文献   

5.
The response of effective quantum yield of photosystem 2 (ΔF/Fm’) to temperature was investigated under field conditions (1 950 m a.s.l.) in three alpine plant species with contrasting leaf temperature climates. The in situ temperature response did not follow an optimum curve but under saturating irradiances [PPFD >800 µìmol(photon) m?2s?1] highest ΔF/Fm’ occurred at leaf temperatures below 10°C. This was comparable to the temperature response of antarctic vascular plants. Leaf temperatures between 0 and 15°C were the most frequently (41 to 56%) experienced by the investigated species. At these temperatures, ΔF/Fm’ was highest in all species (data from all irradiation classes included) but the species differed in the temperature at which ΔF/Fm’ dropped below 50% (Soldanella pusilla >20°C, Loiseleuria procumbens >25°C, and Saxifraga paniculata >40°C). The in situ response of ΔF/Fm’ showed significantly higher ΔF/Fm’ values at saturating PPFD for the species growing in full sunlight (S. paniculata and L. procumbens) than for S. pusilla growing under more moderate PPFD. The effect of increasing PPFD on ΔF/Fm’, for a given leaf temperature, was most pronounced in S. pusilla. Despite the broad diurnal leaf temperature amplitude of alpine environments, only in S. paniculata did saturating PPFD occur over a broad range of leaf temperatures (43 K). In the other two species it was half of that (around 20 K). This indicates that the setting of environmental scenarios (leaf temperature×PPFD) in laboratory experiments often likely exceeds the actual environmental demand in the field.  相似文献   

6.
Porphyra katadae Miura var. hemiphylla Tseng et T. J. Chang, a species distributed around the Liaodong and Shandong Peninsulas of China, produces gametophytes from late winter to early spring. These are monoecious with male and female reproductive tissues in distinct halves or sectors. Vegetative tissues from sectors expected to differentiate into sexual tissue were cultured in the laboratory. Male and female reproductive organs, as well as conchocelis and blades, were differentiated from these tissues. The male and female reproductive tissues were in patches and mixed on the cultured tissue pieces. This was quite different from the wild-type sectored individuals. The F1 conchospore germlings also produced monospores, carposporangia, spermatangia and conchocelis. These carposporangia and spermatangia were in patches and were mixed on the F1 fronds. The results imply that P. katadae var. hemiphylla is possibly sex-differentiated rather than sex-determined. This is the first report of such a dimorphic life history in the genus Porphyra.  相似文献   

7.
This study investigates how hydration during light and dark periods influences growth in two epiphytic old forest lichens, the green algal Lobaria pulmonaria and the cyanobacterial L. scrobiculata. The lichens were cultivated in growth chambers for 14 days (200 μmol m?1 s?2; 12 h photoperiod) at four temperature regimes (25/20 °C, 21/16 °C, 13/8 °C, and 6/1 °C; day/night temperatures) and two hydration regimes (12 h day-time hydration; 12 h day-time + 12 h night-time hydration). Growth was highly dynamic, showing that short-term growth experiments in growth cabinets have a high, but largely unexplored potential in functional lichen studies. The highest measured growth rates were not far from the maximal dry matter gain estimated from published net photosynthetic CO2 uptake data. For the entire data set, photobiont type, temperature, hydration regime and specific thallus mass accounted for 46.6 % of the variation in relative growth rate (RGR). Both species showed substantially higher relative growth rates based on both biomass (RGR) and thallus area (RTAGR) when they were hydrated day and night compared to hydration in light only. Chronic photoinhibition was substantial in thalli hydrated only during the day time and kept at the highest and lowest temperature regimes, resulting in exponential increases in RGR with increasing maximal PSII efficiency (F v/F m) in both species. However, the depression in F v/F m was stronger for the cyanolichen than for the cephalolichen at extreme temperatures. The growth-stimulating effect of night-time hydration suggests that nocturnal metabolic activity improves recovery of photoinhibition and/or enhances the conversion rate of photosynthates into thallus extension.  相似文献   

8.
Physiological data from extreme habitat organisms during stresses are vital information for comprehending their survival. The intertidal seaweeds are exposed to a combination of environmental stresses, the most influential one being regular dehydration and re-hydration. Porphyra katadai var. hemiphylla is a unique intertidal macroalga species with two longitudinally separated, color distinct, sexually different parts. In this study, the photosynthetic performance of both PSI and PSII of the two sexually different parts of P. katadai thalli during dehydration and re-hydration was investigated. Under low-grade dehydration the variation of photosystems of male and female parts of P. katadai were similar. However, after the absolute water content reached 42%, the PSI of the female parts was nearly shut down while that of the male parts still coordinated well and worked properly with PSII. Furthermore, after re-hydration with a better conditioned PSI, the dehydrated male parts were able to restore photosynthesis within 1 h, while the female parts did not. It is concluded that in P. katadai the susceptibility of photosynthesis to dehydration depends on the accommodative ability of PSI. The relatively lower content of phycobiliprotein in male parts may be the cause for a stronger PSI after severe dehydration.  相似文献   

9.
The effect of a wide range of temperatures (?15 and 60°C) in darkness or under strong irradiation [1,600 μmol(photon) m?2 s?1] on quantum yield of photosystem II photochemistry and xanthophyll cycle pigments was investigated in a tropical fruit crop (Musa sp.) and a temperate spring flowering plant (Allium ursinum L.). In darkness within the nonlethal thermal window of A. ursinum (from ?6.7 to 47.7°C; 54.5 K) and of Musa sp. (from ?2.2°C to 49.5°C; 51.7 K) maximal quantum yield of PSII photochemistry (Fv/Fm) was fairly unaffected by temperature over more than 40 K. At low temperature Fv/Fm started to drop with ice nucleation but significantly only with initial frost injuries (temperature at 10% frost damage; LT10). The critical high temperature threshold for PSII (Tc) was 43.8°C in A. ursinum and 44.7°C in Musa sp. Under strong irradiation, exposure to temperatures exceeding the growth ones but being still nonlethal caused photoinhibition in both species. Severity of photoinhibition increased with increasing distance to the growth temperature range. ΔF/Fm′ revealed distinctly different optimum temperature ranges: 27–36°C for Musa sp. and 18–27°C for A. ursinum exceeding maximum growth temperature by 2–7 K. In both species only at temperatures > 30°C zeaxanthin increased and violaxanthin decreased significantly. At nonlethal low temperature relative amounts of xanthophylls remained unchanged. At temperatures > 40°C β-carotene increased significantly in both species. In Musa sp. lutein and neoxanthin were significantly increased at 45°C, in A. ursinum lutein remained unchanged, neoxanthin levels decreased in the supraoptimal temperature range. In darkness, Fv/Fm was highly temperature-insensitive in both species. Under strong irradiation, whenever growth temperature was exceeded, photoinhibition occurred with xanthophylls being changed only under supraoptimal temperature conditions as an antiradical defence mechanism.  相似文献   

10.
The susceptibility to photoinhibition of tree species from three different successional stages were examined using chlorophyll fluorescence and gas exchange techniques. The three deciduous broadleaf tree species were Betula platyphylla var. japonica, pioneer and early successional, Quercus mongolica, intermediate shade‐tolerant and mid‐successional, and Acer mono, shade‐tolerant and late successional. Tree seedlings were raised under three light regimes: full sunlight (open), 10% full sun, and 5% full sun. Susceptibility to photoinhibition was assessed on the basis of the recovery kinetics of the ratio of vaviable to maximum fluorescence (Fv/Fm) of detached leaf discs exposed to about 2000 μmol m?1 s?1 photon flux density (PFD) for 2 h under controlled conditions (25 to 28 °C, fully hydrated). Differences in susceptibility to photodamage among species were not significant in the open and 10% full sun treatments. But in 5% full sun, B. platyphylla sustained a significantly greater photodamage than other species, probably associated with having the lowest photosynthetic capacity indicated by light‐saturated photosynthetic rate (B. platyphylla, 9·87, 5·85 and 2·82; Q. mongolica, 8·05, 6·28 and 4·41; A. mono, 7·93, 6·11 and 5·08 μmol CO2 m?1 s?1for open, 10% and 5% full sun, respectively). To simulate a gap formation and assess its complex effects including high temperature and water stress in addition to strong light on the susceptibility to photoinhibition, we examined photoinhibition in the field by means of monitoring ΔF/Fm on the first day of transfer to natural daylight. Compared with ΔF/Fm in AM, the lower ΔF/Fm in PM responding to lower PFD following high PFD around noon indicated that photoinhibition occurred in plants grown in 10 and 5% full sun. The diurnal changes of ΔF/Fm showed that Q. mongolica grown in 5% full sun was less susceptible to photoinhibition than A. mono although they showed little differences both in photosynthetic capacity in intact leaves and susceptibility to photoinhibition based on leaf disc measurements. These results suggest that shade‐grown Q. mongolica had a higher tolerance for additional stresses such as high temperature and water stress in the field, possibly due to their lower plasticity in leaf anatomy to low light environment.  相似文献   

11.
The effect of variable temperatures (10–50 °C) on photosynthesis and chlorophyll fluorescence in Conocarpus lancifolius was evaluated. Additionally, the ability of the species to synthesize heat-shock proteins (HSPs) to protect against high temperatures, and malondialdehyde (MDA) as a by-product of lipid peroxidation was investigated. Plants at 10 °C showed virtually no measurable growth, leaf discoloration and a few brown lesions, while high temperatures (40 and 50 °C) promoted growth and lateral branch development. Chlorophyll content index, photochemical efficiency (F v/F m) of PS II, electron transport rate and photosynthetic rate declined with decreasing temperature but increased significantly at higher temperatures. Heat-shock protein (HSP 70 kDa) was produced at temperatures 30–50 °C and an additional 90 kDa protein was also produced at 50 °C. Increase in the efficiency of excitation energy captured by the open PS II reaction centers (F v/F m) increased linearly (P ≤ 0.05) with the accumulation of HSP 70 at higher temperatures. However, at low temperatures the concentration of MDA increased significantly, indicating lipid peroxidation due to oxidative stress. The production and accumulation of HSP 70 and 90 kDa coupled with increased electron transport rate and photochemical efficiency can be used to assess survival, growth capacity and to some extent the tolerance of C. lancifolius to elevated temperatures.  相似文献   

12.
Photosynthetic and respiratory responses (P–E curves) of Gracilaria parvispora from the southeast Gulf of California were studied at four temperatures (20, 25, 30, 35 °C) and salinity (25, 30, 35, 40 psu) combinations. The alga showed acclimation in its photosynthetic and respiratory responses to tropical temperature as well as to oceanic salinity. A positive effect of temperature on photosynthetic rate (P max) was observed for all salinities. Photosynthetic rates for treatments at 20 and 25 °C were lower (<9.2 mg O2?g dry weight (dw)?1?h?1) than for treatments at 30 and 35 °C (>12 mg O2 g dw?1?h?1). G. parvispora showed limited tolerance to low salinities (25 psu) and low temperatures (20 °C) and the interaction between temperature and salinity was significant (analysis of variance, P?<?0.05). Responses to salinity indicated adaptation to oceanic salinity. Photosynthetic responses were lower at 25 psu than at higher salinities. The lowest P max values (6.2–8.2 mg O2?g dw?1?h?1) were observed at the lowest salinity (25 psu) regardless of temperature. Compensation and saturation irradiances (26–170 and 57–149 μmol photons m?2?s?1, respectively) indicate adaptation to lower irradiances in shallow (1–2 m depth) habitats, where turbidity can be high, and the capacity of shade adaptation has been developed. Results suggest distribution of this species is mainly related to salinity or temperature. The potential mariculture efforts of G. parvispora would be limited by low temperatures in winter, and indicate that this species will probably not be able to spread further due to low temperatures (<15 °C) in the upper part of the Gulf of California.  相似文献   

13.
The effect of five constant temperatures of 21, 24, 27, 30 and 33 °C on adult life span, reproduction, oviposition behavior and larval developmental time of a bitter gourd inhabited coleopteran insect Epilachna dodecastigma (Wied.) (Coccinellidae) was determined in laboratory conditions under 70 ± 5 % relative humidity and a photoperiod of 12 L : 12 D. Larval developmental time of E. dodecastigma decreased as temperature increased from 21 to 33 °C. Life table data revealed that overall mortality was lowest at 27 °C and highest at 21 °C. Females lived longer than males at all temperatures; but longevity decreased with increase in temperature. Pre-oviposition period decreased significantly with increase in temperature up to 27 °C and thereafter increased at a slower rate; whereas oviposition period decreased significantly with increase in temperature. Fecundity and egg viability increased significantly with an increase in temperature up to 27 °C and thereafter decreased at a slower rate. The intrinsic rate of increase (r m ) was 0.1703, 0.1984, 0.2235, 0.2227 and 0.2181 day?1 at 21, 24, 27, 30 and 33 °C, respectively. The net reproductive rate and finite rate of increase was highest at 27 °C (R o  = 112.05; λ = 1.4233) and lowest at 21 °C (R o  = 51.23; λ = 1.2581).  相似文献   

14.
In temperate-zone mountains, summer frosts usually occur during unpredictable cold spells with snow-falls. Earlier studies have shown that vegetative aboveground organs of most high-mountain plants tolerate extracellular ice in the active state. However, little is known about the impact of frost on reproductive development and reproductive success. In common plant species from the European Alps (Cerastium uniflorum, Loiseleuria procumbens, Ranunculus glacialis, Rhododendron ferrugineum, Saxifraga bryoides, S. moschata, S. caesia), differing in growth form, altitudinal distribution and phenology, frost resistance of reproductive and vegetative shoots was assessed in different reproductive stages. Intact plants were exposed to simulated night frosts between ?2 and ?14 °C in temperature-controlled freezers. Nucleation temperatures, freezing damage and subsequent reproductive success (fruit and seed set, seed germination) were determined. During all reproductive stages, reproductive shoots were significantly less frost resistant than vegetative shoots (mean difference for LT50 ?4.2 ± 2.7 K). In most species, reproductive shoots were ice tolerant before bolting and during fruiting (mean LT50 ?7 and ?5.7 °C), but were ice sensitive during bolting and anthesis (mean LT50 around ?4 °C). Only R. glacialis remained ice tolerant during all reproductive stages. Frost injury in reproductive shoots usually led to full fruit loss. Reproductive success of frost-treated but undamaged shoots did not differ significantly from control values. Assessing the frost damage risk on the basis of summer frost frequency and frost resistance shows that, in the alpine zone, low-statured species are rarely endangered as long as they are protected by snow. The situation is different in the subnival and nival zone, where frost-sensitive reproductive shoots may become frost damaged even when covered by snow. Unprotected individuals are at high risk of suffering from frost damage, particularly at higher elevations. It appears that ice tolerance in reproductive structures is an advantage but not an absolute precondition for colonizing high altitudes with frequent frost events.  相似文献   

15.

The effects of temperature, irradiance, and desiccation on the photosynthesis of a cultivated Japanese green alga Caulerpa lentillifera (Caulerpaceae) were determined by a pulse amplitude modulation (PAM)-chlorophyll fluorometer and dissolved oxygen sensors. The photochemical efficiency in the photosystem II (Fv/Fm and ΔF/Fm') during the 72-h temperature exposures (8, 12, 16, 20, 24, 28, 32, 36, and 40°C) was generally stable at 16–32°C but quickly dropped at lower and higher temperatures. The photosynthesis–temperature curve at 200 μmol photons m?2 s?1 also revealed that the maximum gross photosynthesis (GPmax) occurred at 30.7°C (30.5–30.9, 95% highest density credible intervals). Photosynthesis–irradiance curves at 16, 24, and 32°C quickly saturated, then expressed photoinhibition, and revealed that the maximum net photosynthetic rates (NPmax) and saturation irradiance (Ek) were highest at 32°C and lowest at 16°C. Continuous 6-h exposure to irradiances of 200 (low) and 400 (high) μmol photons m?2 s?1 at 16, 24, and 32°C expressed greater declines in their ΔF/Fm' at 16°C, revealing chronic chilling-light stress. The response to continuous desiccation (~480 min) under 50% humidity at 24°C showed that ΔF/Fm' dropped to zero at 480-min aerial exposure, and the treatments of more than 60-min desiccation did not return to the initial level even after 24-h subsequent rehydration in seawater. Likewise, ΔF/Fm' fell when the absolute water content (AWC) of the frond dropped below AWC of 90% and mostly did not return to the initial level even after 24-h subsequent rehydration in seawater, signifying a low tolerance to desiccation.

  相似文献   

16.
The effects of irradiance, temperature, thermal‐ and chilling‐light sensitivities on the photosynthesis of a temperate alga, Sargassum macrocarpum (Fucales) were determined by a pulse amplitude modulation (PAM)‐chlorophyll fluorometer and dissolved oxygen sensors. Oxygenic photosynthesis–irradiance curves at 8, 20, and 28°C revealed that the maximum net photosynthetic rates (NP max) and saturation irradiance were highest at 28°C, and lowest at 8°C. Gross photosynthesis and dark respiration determined over a range of temperatures (8–36°C) at 300 μmol photons m?2 s?1 revealed that the maximum gross photosynthetic rate (GPmax) occurred at 27.8°C, which is consistent with the highest seawater temperature in the southern distributional limit of this species in Japan. Additionally, the maximum quantum yields of photosystem II (F v/F m) during the 72‐h temperature exposures were stable at 8–28°C, but suddenly dropped to zero at higher temperatures, indicative of PSII deactivation. Continuous exposure (12 h) to irradiance of 200 (low) and 1000 (high) μmol photons m?2 s?1 at 8, 20, and 28°C revealed greater declines in their effective quantum yields (Φ PSII) under high irradiance. While Φ PSII under low irradiance were very similar with the initial F v/F m under 20 and 28°C, values rapidly decreased with exposure duration at 8°C. At this temperature, F v/F m did not recover to initial values even after 12 h of dark acclimation. Final F v/F m of alga at 28°C under high irradiance treatment also did not recover, suggesting its sensitivity to photoinhibition at both low and high temperatures. These photosynthetic characteristics reflect both the adaptation of the species to the general environmental conditions, and its ability to acclimate to seasonal changes in seawater temperature within their geographical range of distribution.  相似文献   

17.
Suaeda salsa L., a C3 euhalophytic herb, is native to saline soils, demonstrates high resistance to salinity stress. The effect of chilling stress on S. salsa under high salinity, particularly the change in unsaturated fatty acid content within membrane lipids, has not been investigated. After a 12 h chilling treatment (4 °C) performed under low irradiance (100 μmol m?2 s?1), the chlorophyll contents, maximal photochemical efficiency of photosystem II (F v/F m) and actual PSII efficiency (ΦPSII) were determined. These measurements were significantly decreased in S. salsa leaves in the absence of salt treatment yet there were no significant changes with a 200 mM NaCl treatment. Chlorophyll contents, F v/F m and ΦPSII in S. salsa under 200 mM NaCl were higher than those without salt treatment. The unsaturated fatty acid content and the double bond index (DBI) of major membrane lipids of monogalactosyldiacylglycerols, digalactosyldiacylglycerols (DGDG), sulphoquinovosyldiacylglycerols and phosphatidylglycerols (PG) significantly increased following the chilling treatment (4 °C) (with 12 h of low irradiance and 200 mM of NaCl). The DBI of DGDG and PG was decreased in the absence of the salt treatment. These results suggest that in the euhalophyte S. salsa, a 200 mM NaCl treatment increases chilling tolerance under conditions of low irradiance (100 μmol m?2 s?1).  相似文献   

18.
Porphyra spp. (currently Porphyra and Pyropia) are major sources of seafood globally. In this study, we investigated the effects of ammonium concentration, water temperature, and thallus stocking density on N-ammonium uptake rate (NUR), tissue nutrients content, N–NH4 + filtration efficiency (NUE: nitrogen uptake efficiency %) of Pyropia yezoensis at a laboratory scale and in a mesoscale to evaluate the potential of this species as a biofilter. Additionally, photosynthetic activity was examined using Diving-PAM fluorometer to evaluate the health status. At a laboratory scale, the NUR and tissue nitrogen (N) content of P. yezoensis increased with increasing NH4 + concentrations in the medium. The NUR at thallus stocking densities of 5 and 10 g fresh weight (FW) L–1 were significantly higher than that at 20 g FW L–1. Effective quantum yield (? F/F m ) and tissue N content was significantly higher at all stocking densities than that at the beginning of experiment. The NUE was over 90 % at 10 and 17 °C, while all thalli cultured at 25 °C died after 5 days. In a mesoscale, the NUE at a thallus stocking density of 10.0 g FW L–1 was significantly higher than that at a stocking density of 5.0 g FW L–1. No differences in the NUE occurred between 10 °C and 17 °C. Photosynthetic activity (?F/Fm and rETRmax) of P. yezoensis at optimal culture condition (10–12 °C and 10 g FW L–1) increased over time through the experiment. This indicates that thallus was healthy during culture and chlorophyll a fluorescence can be as a monitoring tool for evaluating the physiological status of seaweeds in an integrated multi-trophic aquaculture.  相似文献   

19.
In this review we collected data on the length at maturity (Lm) and maximum reported total length (Lmax) of 565 Mediterranean marine fish stocks, representing 150 species, 68 families, 24 orders and 3 classes. Overall, Lm ranged from 2 cm, for the males of the toothcarp Aphanius fasciatus, to 350 cm, for the females of the bluntnose sixgill shark Hexanchus griseus. Lm was positively linearly related with Lmax for Actinopterygii (logLm = ?0.123 + 0.92 × logLmax; r 2 = 0.87, n = 471, P < 0.001) and Elasmobranchii (logLm = ?0.008 + 0.922 × logLmax; r 2 = 0.90, n = 92, P < 0.001) with the two slopes being significantly different (ANCOVA: F = 2,904, P < 0.001). The reproductive load (Lm/Lmax) ranged between 0.23 (sand steenbras Lithognathus mormyrus) and 0.94 (angular roughshark Oxynotus centrina and thornback ray Raja clavata). The mean Lm/Lmax was significantly (ANOVA, F = 34.14, P < 0.001) lower for Actinopterygii (mean = 0.59, SD = 0.122, n = 471) compared to Elasmobranchii (mean = 0.70, SD = 0.132, n = 92) and Holocephali (mean = 0.77, SD = 0.077, n = 2). The Lm/Lmax was significantly (ANOVA, F = 43.80, P < 0.001) higher for species providing some form of parental care, i.e. guarders, bearers, nesters (mean Lm/Lmax ± SD = 0.68 ± 0.141, n = 111) compared to non-guarders (mean Lm/Lmax ± SD = 0.59 ± 0.123, n = 454). The mean Lm/Lmax displayed a remarkable constancy with longitude (northern and southern Mediterranean coastline: ANOVA, F = 0.01, P = 0.93), latitude (western, central and eastern regions: ANOVA, F = 1.25, P = 0.29) and habitat (ANOVA, F = 0.85, P = 0.51).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号