首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
2.
The proto-oncogene int-1 is activated by adjacent insertions of proviral DNA in mouse mammary tumor virus-induced tumors and has transforming activity in certain mammary epithelial cell lines. The gene is normally expressed in the central nervous system of mid-gestational embryos and in the adult testis. We raised antibodies against synthetic int-1 peptides and used these to identify protein products of the gene in cells transfected or infected with retroviral vectors expressing int-1. Four protein species of 36,000, 38,000, 40,000, and 42,000 Mr were immunoprecipitated by antibodies against two different int-1 peptides and were not present in control cells. Partial degradation with V8 protease showed the four species to be structurally related to each other and to int-1 polypeptide synthesized in vitro. Treatment of the cells with tunicamycin prevented the appearance of all but the 36,000-Mr species, suggesting that the slower-migrating forms are glycosylated derivatives. The unglycosylated 36,000-Mr species migrated faster in polyacrylamide gels than the in vitro translation product of int-1 and has probably undergone cleavage of an amino-terminal signal peptide.  相似文献   

3.
Mapping of the plasmid-encoded RNA of the intracellular parasite, Chlamydia trachomatis revealed that the upstream control elements are different from those of other Gram-negative bacteria. A tetranucleotide, AYAA was found near the -10 position, in 5 out of 8 upstream sequences described so far. The plasmid also has a developmentally regulated promoter. The chlamydial upstream elements do not function as promoters in E. coli and vice versa. An E. coli promoter-like sequence has been found to occur fortuitously upstream from the plasmid-encoded dnaB gene. Such sequences may be evolutionary relics.  相似文献   

4.
A transferrin-binding protein (TFBP) with an apparent molecular weight of 42 kd was purified from detergent-soluble membrane proteins of bloodstream forms of Trypanosoma brucei. The protein is not expressed in the insect-borne stage of the parasite's life-cycle. Purified TFBP can be converted from an amphiphilic to a hydrophilic form by cleavage with T.brucei glycosylphosphatidylinositol (GPI)-specific phospholipase C, demonstrating that the C-terminus is modified by a GPI-membrane anchor. The TFBP is encoded by an expression-site-associated gene [ESAG 6 in the nomenclature of Pays et al. (1989) Cell, 57, 835-845] which is under the control of the promoter transcribing the expressed variant surface glycoprotein gene. The possible function of TFBP as a receptor for the uptake of transferrin in bloodstream forms is discussed.  相似文献   

5.
6.
We have isolated three major cDNA fragments of protein phosphatase inhibitor-1 from human brain and liver by RT-PCR. The 536 bp fragment encoded the wild-type of inhibitor-1 while two other fragments were alternative splice products of the inhibitor-1 gene, which was confirmed by partial genomic DNA sequencing. The 380 bp fragment encoded an in-frame 51-residue-deleted inhibitor-1, named inhibitor-1alpha, and the deletion occurred from residue 84 to 134 of inhibitor-1. The 316 bp fragment termed inhibitor-1beta was derived from an internal deletion of 536 bp fragment. This deletion resulted in an out of frame shift, allowing the 316 bp fragment that encoded the partial sequence of inhibitor-1. Based on the reported mRNA sequence of inhibitor-1 and evidence from our RT-PCR, we suggested that inhibitor-1beta consisted of 132 amino acids of which the N-terminal 61 amino acid sequences were identical to inhibitor-1 while the sequence after residue-61 was markedly different.  相似文献   

7.
Glucokinase (GK) has several known polymorphic activating mutations that increase the enzyme activity by enhancing glucose binding affinity and/or by alleviating the inhibition of glucokinase regulatory protein (GKRP), a key regulator of GK activity in the liver. Kinetic studies were undertaken to better understand the effect of these mutations on the enzyme mechanism of GK activation and GKRP regulation and to relate the enzyme properties to the associated clinical phenotype of hypoglycemia. Similar to wild type GK, the transient kinetics of glucose binding for activating mutations follows a general two-step mechanism, the formation of an enzyme-glucose complex followed by an enzyme conformational change. However, the kinetics for each step differed from wild type GK and could be grouped into specific types of kinetic changes. Mutations T65I, Y214C, and A456V accelerate glucose binding to the apoenzyme form, whereas W99R, Y214C, and V455M facilitate enzyme isomerization to the active form. Mutations that significantly enhance the glucose binding to the apoenzyme also disrupt the protein-protein interaction with GKRP to a large extent, suggesting these mutations may adopt a more compact conformation in the apoenzyme favorable for glucose binding. Y214C is the most active mutation (11-fold increase in k(cat)/K(0.5)(h)) and exhibits the most severe clinical effects of hypoglycemia. In contrast, moderate activating mutation A456V nearly abolishes the GKRP inhibition (76-fold increase in K(i)) but causes only mild hypoglycemia. This suggests that the alteration in GK enzyme activity may have a more profound biological impact than the alleviation of GKRP inhibition.  相似文献   

8.
9.
The anomeric specificity of the wild-type recombinant forms of human liver and B-cell glucokinase was investigated using radioactive anomers of d-glucose as tracers. With d-glucose at anomeric equilibrium and at 30 degrees C, the maximal velocity, Hill number, and K(s) amounted, respectively, to 16 micromol min(-1) mg(-1), 1.8 and 6.9 mM in the case of liver glucokinase, and 7.3 micromol min(-1) mg(-1), 2.0 and 7.1 mM in the case of B-cell glucokinase. Whether at 20-22 or 30 degrees C, the maximal velocity, Hill number, and K(m) were significantly lower with alpha-d-glucose than with beta-d-glucose in both liver and B-cell glucokinase. As a result of these differences, the reaction velocity was higher with alpha-d-glucose at low hexose concentrations, while the opposite situation prevailed at high hexose concentrations. In the presence of 0.2 mM d-fructose 6-phosphate, the glucokinase regulatory protein caused a concentration-related inhibition of d-glucose phosphorylation, such an effect fading out at high concentrations of either d-glucose or glucokinase relative to that of its regulatory protein. The phosphorylation of alpha-d-glucose by liver glucokinase appeared more resistant than that of beta-d-glucose to the inhibitory action of d-fructose 6-phosphate, as mediated by the glucokinase regulatory protein. Such a phenomenon failed to achieve statistical significance in the case of the B-cell glucokinase. It is proposed that this information, especially the novel findings concerning the anomeric difference in both Hill number and sensitivity to the glucokinase regulatory protein, should be taken into account when considering the respective contributions of alpha- and beta-d-glucose to the overall phosphorylation of equilibrated d-glucose by glucokinase.  相似文献   

10.
11.
12.
13.
14.
15.
Competitive inhibition of liver glucokinase by its regulatory protein   总被引:1,自引:0,他引:1  
The regulatory protein of rat liver glucokinase (hexokinase IV or D) behaved as a fully competitive inhibitor of this enzyme when glucose was the variable substrate, i.e. it increased the half-saturating concentration of glucose as a linear function of its concentration without affecting V (velocity at infinite concentration of substrate). The inhibition by the regulatory protein and that by palmitoyl-CoA were synergistic with that by N-acetyl-glucosamine, indicating that the two former inhibitors bind to a site distinct from the catalytic site. In contrast, the effects of the regulatory protein and palmitoyl-CoA were competitive with each other, indicating that these two inhibitors bind to the same site. The regulatory protein exerted a non-competitive inhibition with respect to Mg-ATP at concentrations of this nucleotide less than 0.5 mM. At higher concentrations, the latter antagonized the inhibition by the regulatory protein partly by decreasing the apparent affinity for fructose 6-phosphate. The following anions inhibited glucokinase non-competitively with respect to glucose: Pi, sulfate, I-, Br-, No3-, Cl-, F- and acetate. Pi and sulfate, at concentrations in the millimolar range, decreased the inhibition by the regulatory protein by competing with fructose 6-phosphate. Monovalent anions also antagonized the inhibition by the regulatory protein with the following order of potency: I- greater than Br- greater than NO3- greater than Cl- greater than F- greater than acetate and their effect was non-competitive with respect to fructose 6-phosphate. Glucokinase from Buffo marinus and pig liver were, like the rat liver enzyme, inhibited by the regulatory protein, as well as by palmitoyl-CoA at micromolar concentrations. In contrast, neither compound inhibited hexokinases from rat brain, beef heart or yeast, or the low-Km specific glucokinase from Bacillus stearothermophilus.  相似文献   

16.
The mutation Gly467-->Ser in Glu glucoamylase was designed to investigate differences between two highly homologous wild-type Saccharomycopsis fibuligera Gla and Glu glucoamylases. Gly467, localized in the conserved active site region, S5, is replaced by Ser in the Gla glucoamylase. These amino acid residues are the only two known to occupy this position in the elucidated glucoamylase sequences. The data from the kinetic analysis revealed that replacement of Gly467 with Ser in Glu glucoamylase decreased the kcat towards all substrates tested to values comparable with those of the Gla enzyme. Moreover, the mutant glucoamylase appeared to be less stable compared to the wild-type Glu glucoamylase with respect to thermal unfolding. Microcalorimetric titration studies of the interaction with the inhibitor acarbose indicated differences in the binding between Gla and Glu enzymes. The Gla glucoamylase, although less active, binds acarbose stronger (Ka congruent with 10(13).M(-1)) than the Glu enzyme (Ka congruent with 10(12).M(-1)). In all enzymes studied, the binding of acarbose was clearly driven by enthalpy, with a slightly favorable entropic contribution. The binding of another glucoamylase inhibitor, 1-deoxynojirimycin, was about 8-9 orders of magnitude weaker (Ka congruent with 10(4).M(-1)) than that of acarbose. From comparison of kinetic parameters for the nonglycosylated and glycosylated enzymes it can be deduced that the glycosylation does not play a critical role in enzymatic activity. However, results from differential scanning calorimetry demonstrate an important role of the carbohydrate moiety in the thermal stability of glucoamylase.  相似文献   

17.
Glucokinase (GK) plays a key role in the control of blood glucose homeostasis. We identified a small molecule GK activator, compound A, that increased the glucose affinity and maximal velocity (V(max)) of GK. Compound A augmented insulin secretion from isolated rat islets and enhanced glucose utilization in primary cultured rat hepatocytes. In rat oral glucose tolerance tests, orally administrated compound A lowered plasma glucose elevation with a concomitant increase in plasma insulin and hepatic glycogen. In liver, GK activity is acutely controlled by its association to the glucokinase regulatory protein (GKRP). In order to decipher the molecular aspects of how GK activator affects the shuttling of GK between nucleus and cytoplasm, the effect of compound A on GK-GKRP interaction was further investigated. Compound A increased the level of cytoplasmic GK in both isolated rat primary hepatocytes and the liver tissues from rats. Experiments in a cell-free system revealed that compound A interacted with glucose-bound free GK, thereby impairing the association of GK and GKRP. On the other hand, compound A did not bind to glucose-unbound GK or GKRP-associated GK. Furthermore, we found that glucose-dependent GK-GKRP interaction also required ATP. Given the combined prominent role of GK on insulin secretion and hepatic glucose metabolism where the GK-GKRP mechanism is involved, activation of GK has a new therapeutic potential in the treatment of type 2 diabetes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号