首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-16 (IL-16) activates CD4(+) cells, possibly by direct interaction with CD4. IL-16 structure and function are highly conserved across species, suggesting similar conservation of a putative IL-16 binding site on CD4. Comparison of the human CD4 amino acid sequence with that of several different species revealed that immunoglobulin-like domain 4 is the most conserved extracellular region. Potential interaction of this domain with IL-16 was studied by testing murine D4 sequence-based oligopeptides for inhibition of IL-16 chemoattractant activity and inhibition of IL-16 binding to CD4 in vitro. Three contiguous 12-residue D4 region peptides (designated A, B, and C) blocked IL-16 chemoattractant activity, with peptide B the most potent. Peptides A and B were synergistic for inhibition, but peptide C was not. Peptides A and B also blocked IL-16 binding to CD4 in vitro, whereas peptide C did not. CD4, in addition to its known function as a receptor for major histocompatibility complex class II, contains a binding site for IL-16 in the D4 domain. The D4 residues required for IL-16 binding overlap those previously shown to participate in CD4-CD4 dimerization following class II major histocompatibility complex binding, providing a mechanistic explanation for the known function of IL-16 to inhibit the mixed lymphocyte reaction.  相似文献   

2.
Salp15 is an Ixodes scapularis salivary protein that inhibits CD4+ T cell activation through the repression of TCR ligation-triggered calcium fluxes and IL-2 production. We show in this study that Salp15 binds specifically to the CD4 coreceptor on mammalian host T cells. Salp15 specifically associates through its C-terminal residues with the outermost two extracellular domains of CD4. Upon binding to CD4, Salp15 inhibits the subsequent TCR ligation-induced T cell signaling at the earliest steps including tyrosine phosphorylation of the Src kinase Lck, downstream effector proteins, and lipid raft reorganization. These results provide a molecular basis to understanding the immunosuppressive activity of Salp15 and its specificity for CD4+ T cells.  相似文献   

3.
4.
We report the functional phage display of single chain human interleukin-5 (scIL-5) and its use for receptor-binding epitope randomization. Enzyme-linked immunosorbent assays and optical biosensor analyses verified expression of scIL-5 on the phage surface and binding of scIL-5 phage to interleukin-5 receptor alpha chain. Furthermore, an asymmetrically disabled but functional scIL-5 mutant, (wt/A5)scIL-5, was displayed on phage. (wt/A5)scIL-5 was constructed from an N-terminal half containing the original five charged residues (88EERRR92) in the CD loop, including the Glu89 and Arg91 believed key in the alpha chain recognition site, combined with a C-terminal half containing a disabled CD loop sequence (88AAAAA92) missing the key recognition residues. This asymmetric variant was used as a starting point to generate an scIL-5 library in which the intact 88-92 N-terminal CD loop was randomized. From this epitope library, a receptor-binding variant of IL-5 was detected, (SLRGG/A5)scIL-5, in which the only charged residue in the CD loop is an Arg at position 90. Characterization of this variant expressed as a soluble protein in E. coli shows that the IL-5 pharmacophore for receptor alpha chain binding can function with a single positive charge in the CD loop. Charge-depleted CD loop mimetics of IL-5 suggest the importance of charge distribution in functional IL-5 receptor recruitment.  相似文献   

5.
Barnett ME  Zolkiewski M 《Biochemistry》2002,41(37):11277-11283
ClpB is a member of a multichaperone system in Escherichia coli (with DnaK, DnaJ, and GrpE) that reactivates strongly aggregated proteins. The sequence of ClpB contains two ATP-binding domains, each containing Walker consensus motifs. The N- and C-terminal sequence regions of ClpB do not contain known functional motifs. In this study, we performed site-directed mutagenesis of selected charged residues within the Walker A motifs (Lys212 and Lys611) and the C-terminal region of ClpB (Asp797, Arg815, Arg819, and Glu826). We found that the mutations K212T, K611T, D797A, R815A, R819A, and E826A did not significantly affect the secondary structure of ClpB. The mutation of the N-terminal ATP-binding site (K212T), but not of the C-terminal ATP-binding site (K611T), and two mutations within the C-terminal domain (R815A and R819A) inhibited the self-association of ClpB in the absence of nucleotides. The defects in self-association of these mutants were also observed in the presence of ATP and ADP. The four mutants K212T, K611T, R815A, and R819A showed an inhibition of chaperone activity, which correlated with their low ATPase activity in the presence of casein. Our results indicate that positively charged amino acids that are located along the intersubunit interface (this includes Lys212 in the Walker A motif of the N-terminal ATP-binding domain as well as Arg815 and Arg819 in the C-terminal domain) participate in intersubunit salt bridges and stabilize the ClpB oligomer. Interestingly, we have identified a conserved residue within the C-terminal domain (Arg819) which does not participate directly in nucleotide binding but is essential for the chaperone activity of ClpB.  相似文献   

6.
The effect of the length of ANF peptides on the inhibition of the norepinephrine-induced contraction was studied. Starting from the 26 residues ANF (Arg101-Tyr126), shorter N- and/or C-terminal fragments were produced, either by N-terminal chemical cleavage or C-terminal enzymatic digestion of ANF or both respectively. The N-terminal removal of Arg101 did not modify the inhibitory response. Further N-terminal truncation up to des-Arg101-Arg102-Ser103-Ser104 ANF still produced a marked inhibitory effect on norepinephrine. In contrast C-terminal cleavage had a much more pronounced effect. Since des-Tyr126 ANF, des-Arg125-Tyr126 ANF and des-Phe124-Arg125-Tyr126 ANF exhibit much lower activities than the parent ANF. Finally, when the 5 residues C-terminal to Cys121 are removed, the resulting molecule is almost inactive. These data indicate that the C-terminal segment of ANF may modulate the binding of ANF to its receptor(s). Relatively, the N-terminal region seems to be much less important.  相似文献   

7.
Cystathionine beta-synthase is a tetrameric hemeprotein that catalyzes the pyridoxal 5'-phosphate-dependent condensation of serine and homocysteine to cystathionine. We have used deletion mutagenesis of both the N and C termini to investigate the functional organization of the catalytic and regulatory regions of this enzyme. Western blot analysis of these mutants expressed in Escherichia coli indicated that residues 497-543 are involved in tetramer formation. Deletion of the 70 N-terminal residues resulted in a heme-free protein retaining 20% of wild type activity. Additional deletion of 151 C-terminal residues from this mutant resulted in an inactive enzyme. Expression of this double-deletion mutant as a glutathione S-transferase fusion protein generated catalytically active protein (15% of wild type activity) that was unaffected by subsequent removal of the fusion partner. The function of the N-terminal region appears to be primarily steric in nature and involved in the correct folding of the enzyme. The C-terminal region of human cystathionine beta-synthase contains two hydrophobic motifs designated "CBS domains." Partial deletion of the most C-terminal of these domains decreased activity and caused enzyme aggregation and instability. Removal of both of these domains resulted in stable constitutively activated enzyme. Deletion of as few as 8 C-terminal residues increased enzyme activity and abolished any further activation by S-adenosylmethionine indicating that the autoinhibitory role of the C-terminal region is not exclusively a function of the CBS domains.  相似文献   

8.
Trypanosoma cruzi expresses a trans-sialidase on its surface, which catalyzes the transfer of sialic acid from mammalian host glycans to its own surface glycoproteins. It has been proposed that the enzyme consists of three domains prior to a long C-terminal repeating sequence that is not required for enzyme activity. The first of these domains shares significant sequence identity with bacterial sialidases which catalyse the hydrolysis of sialic acid. Here we report the sequence of the N-terminal domains of the TS19y trans-sialidase gene, which was expressed in bacteria with the same specific activity as natural enzyme of T. cruzi. Various deletion mutants of TS19y, without the C-terminal tandem repeat, have been cloned and expressed and their trans-sialidase and sialidase activities measured. These experiments show that all three N-terminal domains are required for full trans-sialidase activity, though only the first is necessary for sialidase activity. Some transferase activity is observed, however, even with the shortest construct comprising the first N-terminal domain. Deletion mutants to probe the role of the N-terminal residues of the first domain suggest that the first 33 residues are also required for trans-sialidase activity, but not for sialidase activity. Molecular modelling of the first N-terminal domain of TS19y based on our structures of bacterial sialidases and site-directed mutations suggests the location of a galactose-binding site within this domain.  相似文献   

9.
We have investigated the function of N-terminal and C-terminal domains of the human ETA receptor by expressing truncated mutants in COS-7 cells. Three kinds of ETA receptors truncated in the N-terminal extracellular or C-terminal intracellular domains were produced. Deletion of the entire extracellular N-terminal or intracellular C-terminal domain completely inactivated the ET-1 binding activity. However, the deletion of one half of the N-terminal extracellular domain of the ETA receptor, missing one of two N-linked glycosylation sites, maintained complete binding activity. Specific monoclonal antibodies detected all the truncated ETA receptors in the cell membrane fraction of transfected COS-7 cells. The size of the ETA receptor was heterogeneous due to differential glycosylation and distributed in 48K, 45K and 42K dalton bands in Western blot analysis. These results demonstrated that a part of the N-terminal domain in close proximity to the first transmembrane region is required for the ligand binding activity of the ETA receptor, and the C-terminal domain is perhaps necessary as an anchor for maintenance of the binding site.  相似文献   

10.
Interactor/inhibitor 1 of Cdc2 kinase (ICK1) from Arabidopsis thaliana is the first plant cyclin-dependent kinase (CDK) inhibitor, and overexpression of ICK1 inhibits CDK activity, cell division and plant growth in transgenic plants. In this study, ICK1 and deletion mutants were expressed either alone or as green fluorescent protein (GFP) fusion proteins in transgenic Arabidopsis plants. Deletion of the C-terminal 15 or 29 amino acids greatly reduced or completely abolished the effects of ICK1 on the transgenic plants, and recombinant proteins lacking the C-terminal residues lost the ability to bind to CDK complex and the kinase inhibition activity, demonstrating the role of the conserved C-terminal domain in in vivo kinase inhibition. In contrast, the mutant ICK1DeltaN108 with the N-terminal 108 residues deleted had much stronger effects on plants than the full-length ICK1. Analyses demonstrated that this effect was not because of an enhanced ability of ICK1DeltaN108 protein to inhibit CDK activity, but a result of a much higher level of ICK1DeltaN108 protein in the plants, indicating that the N-terminal domain contains a sequence or element increasing protein instability in vivo. Furthermore, GFP-ICK1 protein was restricted to the nuclei in roots of transgenic plants, even with the C-terminal or the N-terminal domain deleted, suggesting that a sequence in the central domain of ICK1 is responsible for nuclear localization. These results provide mechanistic understanding about the function and regulation of this cell cycle regulator in plants.  相似文献   

11.
Nuclear translocation of the N-terminal prodomain of interleukin-16   总被引:3,自引:0,他引:3  
Interleukin-16 (IL-16) is a pleiotropic cytokine that functions as a chemoattractant factor, a modulator of T cell activation, and an inhibitor of human immunodeficiency virus (HIV) replication. These diverse functions are exclusively attributed to the secreted C-terminal peptide of 121 amino acids (mature IL-16), which is cleaved from the precursor protein (pro-IL-16) by caspase-3. Human pro-IL-16 is comprised of 631 amino acids with three PDZ domains, one of which is present in secreted mature IL-16. No cellular localization or biologic functions have been ascribed to the unusually large and highly conserved N-terminal prodomain formed as a result of proteolytic release of the third PDZ domain of pro-IL-16. Here we show that the N-terminal prodomain of pro-IL-16 translocates into the nucleus following cleavage of the C-terminal segment. The nuclear localization signal of pro-IL-16 consists of a classical bipartite nuclear targeting motif. We also show that the nuclear targeting of the IL-16 prodomain induces a G(0)/G(1) arrest in the cell cycle. Taken together, the high degree of conservation of the prodomain among species, the presence of two PDZ motifs, and the nuclear localization and subsequent inhibitory effect on cell cycle progression suggest that pro-IL-16 is cleaved into two functional proteins, a C-terminal-secreted cytokine and an N-terminal product, which affects the cell cycle.  相似文献   

12.
13.
The ability of HIV-1 gp120 to inhibit chemokine signaling prompted us to determine whether signaling through CD4 by a natural ligand, IL-16, could alter cellular responsiveness to chemokine stimulation. These studies demonstrate that IL-16/CD4 signaling in T lymphocytes results in a selective loss of macrophage-inflammatory protein (MIP)-1 beta/CCR5-induced chemotaxis. There was no effect on monocyte chemoattractant protein-2/CCR1, -2, or -3-induced chemotaxis. Desensitization of CCR5 by IL-16 required at least 10 min of pretreatment; no modulation of CCR5 expression was observed, nor was MIP-1 beta binding to CCR5 altered. Using murine T cell hybridomas transfected to express native or mutated forms of CD4, it was determined that IL-16/CD4 induces a p56lck-dependent signal that results in desensitization of CCR5. The desensitization process is reciprocal and again selective, as prior CCR5 stimulation, but not CCR1, -2, or -3 stimulation, completely inhibits IL-16/CD4-induced T cell migration. Of interest, while p56lck enzymatic activity is not required for IL-16-induced migration, it was required for desensitization of CCR5. These studies indicate the existence of reciprocal receptor cross-desensitization between CD4 and CCR5 induced by two proinflammatory cytokines and suggest a selective relationship between the two receptors.  相似文献   

14.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

15.
CD4 recruitment to T cell receptor (TCR)-peptide-major histocompatibility class II complexes is required for stabilization of low affinity antigen recognition by T lymphocytes. The cytoplasmic portion of CD4 is thought to amplify TCR-initiated signal transduction via its association with the protein tyrosine kinase p56(lck). Here we describe a novel functional determinant in the cytosolic tail of CD4 that inhibits TCR-induced T cell activation. Deletion of two conserved hydrophobic amino acids from the CD4 carboxyl terminus resulted in a pronounced enhancement of CD4-mediated T cell costimulation. This effect was observed in the presence or absence of p56(lck), implying involvement of alternative cytosolic ligands of CD4. A two-hybrid screen with the intracellular portion of CD4 identified a previously unknown 33-kDa protein, ACP33 (acidic cluster protein 33), as a novel intracellular binding partner of CD4. Since interaction with ACP33 is abolished by deletion of the hydrophobic CD4 C-terminal amino acids mediating repression of T cell activation, we propose that ACP33 modulates the stimulatory activity of CD4. Furthermore, we demonstrate that interaction with CD4 is mediated by the noncatalytic alpha/beta hydrolase fold domain of ACP33. This suggests a previously unrecognized function for alpha/beta hydrolase fold domains as a peptide binding module mediating protein-protein interactions.  相似文献   

16.
The cyclic peptide AF17121 (Ac-VDECWRIIASHTWFCAEE) that inhibits interleukin 5 (IL-5) function and IL-5 receptor alpha-chain (IL-5Ralpha) binding has been derived from recombinant random peptide library screening and follow-up synthetic variation. To better understand the structural basis of its antagonist activity, AF17121 and a series of analogs of the parent peptide were prepared by solid phase peptide synthesis. Sequence variation was focused on the charged residues Asp(2), Glu(3), Arg(6), Glu(17), and Glu(18). Two of those residues, Glu(3) and Arg(6), form an EXXR motif that was found to be common among library-derived IL-5 antagonists. The E and R in the EXXR motif have a proximity similar to charged residues in a previously identified receptor alpha binding region, the beta-strand between the C- and D-helices of human IL-5. Optical biosensor interaction kinetics and cell proliferation assays were used to evaluate the antagonist activities of the purified synthetic peptides, by measuring competition with the highly active single chain IL-5. Analogs in which acidic residues (Asp(2), Glu(3), Glu(17), and Glu(18)) were replaced individually by Ala retained substantial competition activity, with multiple replacements in these residues leading to fractional loss of potency at most. In contrast, R6A analogs had strongly reduced competition activity. The results reveal that the arginine residue is crucial for the IL-5Ralpha binding of AF17121, while the acidic residues are not essential though likely complex-stabilizing particularly in the Asp(2)-Glu(3) region. By CD, AF17121 exhibited mostly disordered structure with evidence for a small beta-sheet content, and replacement of the arginine had no influence on the observed secondary structure of the peptides. The dominance of Arg(6) in AF17121 activity corresponds to previous findings of dominance of the positive charge balance in the antiparallel beta-sheet of IL-5 composed of (88)EERRR(92) in one strand of the CD turn region of IL-5 and with Arg(32) in the neighboring beta-strand. These results argue that AF17121 and related library-derived peptides function by mimicking the CD turn receptor alpha recognition epitope in IL-5 and open the way to small molecule antagonist design.  相似文献   

17.
We have used backbone N-methylations of parathyroid hormone (PTH) to study the role of these NH groups in the C-terminal amphiphilic alpha-helix of PTH (1-31) in binding to and activating the PTH receptor (P1R). The circular dichroism (CD) spectra indicated the structure of the C-terminal alpha-helix was locally disrupted around the methylation site. The CD spectra differences were explained by assuming a helix disruption for four residues on each side of the site of methylation and taking into account the known dependence of CD on the length of an alpha-helix. Binding and adenylyl cyclase-stimulating data showed that outside of the alpha-helix, methylation of residues Asp30 and Val31 had little effect on structure or activities. Within the alpha-helix, disruption of the structure was associated with increased loss of activity, but for specific residues Val21, Leu24, Arg25, and Leu28 there was a dramatic loss of activities, thus suggesting a more direct role of these NH groups in correct P1R binding and activation. Activity analyses with P1R-delNT, a mutant with its long N-terminal region deleted, gave a different pattern of effects and implicated Ser17, Trp23, and Lys26 as important for its PTH activation. These two groups of residues are located on opposite sides of the helix. These results are compatible with the C-terminal helix binding to both the N-terminal segment and also to the looped-out extracellular region. These data thus provide direct evidence for important roles of the C-terminal domain of PTH in determining high affinity binding and activation of the P1R receptor.  相似文献   

18.
19.
Proinflammatory molecules, including IFN-gamma and IL-12, play a crucial role in the elimination of causative agents. To allow healing, potent anti-inflammatory processes are required to down-regulate the inflammatory response. In this study, we first show that CD47/integrin-associated protein, a ubiquitous multispan transmembrane protein highly expressed on T cells, interacts with signal-regulator protein (SIRP)-alpha, an immunoreceptor tyrosine-based inhibition motif-containing molecule selectively expressed on myelomonocytic cells, and next demonstrate that this pair of molecules negatively regulates human T and dendritic cell (DC) function. CD47 ligation by CD47 mAb or L-SIRP-alpha transfectants inhibits IL-12R expression and down-regulates IL-12 responsiveness of activated CD4(+) and CD8(+) adult T cells without affecting their response to IL-2. Human CD47-Fc fusion protein binds SIRP-alpha expressed on immature DC and mature DC. SIRP-alpha engagement by CD47-Fc prevents the phenotypic and functional maturation of immature DC and still inhibits cytokine production by mature DC. Finally, in allogeneic MLR between mDC and naive T cells, CD47-Fc decreases IFN-gamma production after priming and impairs the development of a Th1 response. Therefore, CD47 on T cells and its cognate receptor SIRP-alpha on DC define a novel regulatory pathway that may be involved in the maintenance of homeostasis by preventing the escalation of the inflammatory immune response.  相似文献   

20.
T H Bestor 《The EMBO journal》1992,11(7):2611-2617
Mammalian DNA (cytosine-5) methyltransferase contains a C-terminal domain that is closely related to bacterial cytosine-5 restriction methyltransferase. This methyltransferase domain is linked to a large N-terminal domain. It is shown here that the N-terminal domain contains a Zn binding site and that the N- and C-terminal domains can be separated by cleavage with trypsin or Staphylococcus aureus protease V8; the protease V8 cleavage site was determined by Edman degradation to lie 10 residues C-terminal of the run of alternating lysyl and glycyl residues which joins the two domains and six residues N-terminal of the first sequence motif conserved between the mammalian and bacterial cytosine methyltransferases. While the intact enzyme had little activity on unmethylated DNA substrates, cleavage between the domains caused a large stimulation of the initial velocity of methylation of unmethylated DNA without substantial change in the rate of methylation of hemimethylated DNA. These findings indicate that the N-terminal domain of DNA methyltransferase ensures the clonal propagation of methylation patterns through inhibition of the de novo activity of the C-terminal domain. Mammalian DNA methyltransferase is likely to have arisen via fusion of a prokaryotic-like restriction methyltransferase and an unrelated DNA binding protein. Stimulation of the de novo activity of DNA methyltransferase by proteolytic cleavage in vivo may contribute to the process of ectopic methylation observed in the DNA of aging animals, tumors and in lines of cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号