首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that pituitary growth hormone displays an episodic pattern of evolution, with a slow underlying evolutionary rate and occasional sustained bursts of rapid change. The present study establishes that pituitary prolactin shows a similar pattern. During much of tetrapod evolution the sequence of prolactin has been strongly conserved, showing a slow basal rate of change (approx 0.27 × 109 substitutions/amino acid site/year). This rate has increased substantially (∼12- to 38-fold) on at least four occasions during eutherian evolution, during the evolution of primates, artiodactyls, rodents, and elephants. That these increases are real and not a consequence of inadvertant comparison of paralogous genes is shown (for at least the first three groups) by the fact that they are confined to mature protein coding sequence and not apparent in sequences coding for signal peptides or when synonymous substitutions are examined. Sequences of teleost prolactins differ markedly from those of tetrapods and lungfish, but during the course of teleost evolution the rate of change of prolactin has been less variable than that of growth hormone. It is concluded that the evolutionary pattern seen for prolactin shows long periods of near-stasis interrupted by occasional bursts of rapid change, resembling the pattern seen for growth hormone in general but not in detail. The most likely basis for these bursts appears to be adaptive evolution though the biological changes involved are relatively small. Received: 31 August 1999 / Accepted: 9 February 2000  相似文献   

2.
3.
4.
The AAA proteins (ATPases Associated with a variety of cellular Activities) are found in eubacterial, archaebacterial, and eukaryotic species and participate in a large number of cellular processes, including protein degradation, vesicle fusion, cell cycle control, and cellular secretory processes. The AAA proteins are characterized by the presence of a 230 to 250-amino acid ATPase domain referred to as the Conserved ATPase Domain or CAD. Phylogenetic analysis of 133 CAD sequences from 38 species reveal that AAA CADs are organized into discrete groups that are related not only in structure but in cellular function. Evolutionary analyses also indicate that the CAD was present in the last common ancestor of eubacteria, archaebacteria, and eukaryotes. The eubacterial CADs are found in metalloproteases, while CAD-containing proteins in the archaebacterial and eukaryotic lineages appear to have diversified by a series of gene duplication events that lead to the establishment of different functional AAA proteins, including proteasomal regulatory, NSF/Sec, and Pas proteins. The phylogeny of the CADs provides the basis for establishing the patterns of evolutionary change that characterize the AAA proteins. Received: 28 January 1997 / Accepted: 8 May 1997  相似文献   

5.
Pituitary growth hormone (GH) and prolactin have been shown previously to display a pattern of evolution in which episodes of rapid change are imposed on a low underlying basal rate (near-stasis). This study was designed to explore whether a similar pattern is seen in the evolution of other protein hormones in mammals. Seven protein hormones were examined (with the common α-subunit of the glycoprotein hormones providing an additional polypeptide for analysis)—those for which sequences from at least four eutherian orders are available with a suitable non-eutherian outgroup. Six of these (GH, prolactin, insulin, parathyroid hormone, glycoprotein hormone α-subunit, and luteinizing hormone β-subunit) showed markedly variable evolutionary rates in each case with a pattern of a slow basal rate and bursts of rapid change, the precise positions of the bursts varying from protein to protein. Two protein hormones (follicle-stimulating hormone β-subunit and thyroid-stimulating hormone β-subunit) showed no significant rate variation. Based on the sequences currently available, and pooling data from all eight proteins, the phase of slow basal change occupied about 85% of the sampled evolutionary time, but most evolutionary change (about 62% of the substitutions accepted) occurred during the episodes of rapid change. It is concluded that, in mammals at least, a pattern of prolonged periods of near-stasis with occasional episodes of rapid change provides a better model of evolutionary change for protein hormones than the one of constant evolutionary rates that is commonly favored. The mechanisms underlying this episodic evolution are not yet clear, and it may be that they vary from one group to another; in some cases, positive selection appears to underlie bursts of rapid change. Where gene duplication is associated with a period of accelerated evolution this often occurs at the end rather than the beginning of the episode. To what extent the type of pattern seen for protein hormones can be extended to other proteins remains to be established. Received: 10 October 2000 / Accepted: 18 December 2000  相似文献   

6.
7.
Circular permutations of genes during molecular evolution often are regarded as elusive, although a simple model can explain these rearrangements. The model assumes that first a gene duplication of the precursor gene occurs in such a way that both genes become fused in frame, leading to a tandem protein. After generation of a new start codon within the 5′ part of the tandem gene and a stop at an equivalent position in the 3′ part of the gene, a protein is encoded that represents a perfect circular permutation of the precursor gene product. The model is illustrated here by the molecular evolution of adenine-N6 DNA methyltransferases. β- and γ-type enzymes of this family can be interconverted by a single circular permutation event. Interestingly, tandem proteins, proposed as evolutionary intermediates during circular permutation, can be directly observed in the case of adenine methyltransferases, because some enzymes belonging to type IIS, like the FokI methyltransferase, are built up by two fused enzymes, both of which are active independently of each other. The mechanism for circular permutation illustrated here is very easy and applicable to every protein. Thus, circular permutation can be regarded as a normal process in molecular evolution and a changed order of conserved amino acid motifs should not be interpreted to argue against divergent evolution. Received: 17 November 1998 / Accepted: 19 February 1999  相似文献   

8.
目的:从来自中国南海的4种芋螺中克隆出包含完整3’和5’非翻译区的蛋白质二硫键异构酶(PDI)全基因序列,并对其进行序列及进化分析。方法:根据各种生物PDI基因的保守区域设计引物,利用3’和5’cDNA末端快速扩增(RACE)方法克隆出PDI全基因序列,并通过生物信息学方法对各芋螺PDI序列进行分析。结果与结论:从中国南海玉女芋螺、黑星芋螺、堂皇芋螺、桶形芋螺cDNA中克隆出包含有完整3’和5’非翻译区的PDI全基因序列;分析结果表明各芋螺之间的同源性大于90%,而与对虾、人类、酿酒酵母的同源性均小于60%;各芋螺PDI与其他生物的2个活性位点序列高度保守,而底物结合位点具有物种特异性,进化树显示各芋螺PDI的特征可能受其捕食食性影响。  相似文献   

9.
Molecular Evolution of the Myeloperoxidase Family   总被引:4,自引:0,他引:4  
Animal myeloperoxidase and its relatives constitute a diverse protein family, which includes myeloperoxidase, eosinophil peroxidase, thyroid peroxidase, salivary peroxidase, lactoperoxidase, ovoperoxidase, peroxidasin, peroxinectin, cyclooxygenase, and others. The members of this protein family share a catalytic domain of about 500 amino acid residues in length, although some members have distinctive mosaic structures. To investigate the evolution of the protein family, we performed a comparative analysis of its members, using the amino acid sequences and the coordinate data available today. The results obtained in this study are as follows: (1) 60 amino acid sequences belonging to this family were collected by database searching. We found a new member of the myeloperoxidase family derived from a bacterium. This is the first report of a bacterial member of this family. (2) An unrooted phylogenetic tree of the family was constructed according to the alignment. Considering the branching pattern in the obtained phylogenetic tree, together with the mosaic features in the primary structures, 60 members of the myeloperoxidase family were classified into 16 subfamilies. (3) We found two molecular features that distinguish cyclooxygenase from the other members of the protein family. (4) Several structurally deviated segments were identified by a structural comparison between cyclooxygenase and myeloperoxidase. Some of the segments seemed to be associated with the functional and/or structural differences between the enzymes. Received: 25 January 2000 / Accepted: 19 July 2000  相似文献   

10.
Evolution of proteins encoded in nucleotide sequences began with the advent of the triplet code. The chronological order of the appearance of amino acids on the evolution scene and the steps in the evolution of the triplet code have been recently reconstructed (Trifonov, 2000b) on the basis of 40 different ranking criteria and hypotheses. According to the consensus chronology, the pair of complementary GGC and GCC codons for the amino acids alanine and glycine appeared first. Other codons appeared as complementary pairs as well, which divided their respective amino acids into two alphabets, encoded by triplets with either central purines or central pyrimidines: G, D, S, E, N, R, K, Q, C, H, Y, and W (Glycine alphabet G) and A, V, P, S, L, T, I, F, and M (Alanine alphabet A). It is speculated that the earliest polypeptide chains were very short, presumably of uniform length, belonging to two alphabet types encoded in the two complementary strands of the earliest mRNA duplexes. After the fusion of the minigenes, a mosaic of the alphabets would form. Traces of the predicted mosaic structure have been, indeed, detected in the protein sequences of complete prokaryotic genomes in the form of weak oscillations with the period 12 residues in the form of alteration of two types of 6 residue long units. The next stage of protein evolution corresponded to the closure of the chains in the loops of the size 25–30 residues (Berezovsky et al., 2000). Autocorrelation analysis of proteins of 23 complete archaebacterial and eubacterial genomes revealed that the preferred distances between valine, alanine, glycine, leucine, and isoleucine along the sequences are in the same range of 25–30 residues, indicating that the loops are primarily closed by hydrophobic interactions between the ends of the loops. The loop closure stage is followed by the formation of typical folds of 100–200 amino acids, via end-to-end fusion of the genes encoding the loop-size chains. This size was apparently dictated by the optimal ring closure for DNA. In both cases the closure into the ring (loop) rendered evolutionarily advantageous stability to the respective structures. Further gene fusions lead to the formation of modern multidomain proteins. Recombinational gene splicing is likely to have appeared after the DNA circularization stage. Received: 21 December 2000 / Accepted: 28 February 2001  相似文献   

11.
The Molecular Evolution of the Vertebrate Trypsinogens   总被引:1,自引:0,他引:1  
We expand the already large number of known trypsinogen nucleotide and amino acid sequences by presenting additional trypsinogen sequences from the tunicate (Boltenia villosa), the lamprey (Petromyzon marinus), the pufferfish (Fugu rubripes), and the frog (Xenopus laevis). The current array of known trypsinogen sequences now spans the entire vertebrate phylogeny. Phylogenetic analysis is made difficult by the presence of multiple isozymes within species and rates of evolution that vary highly between both species and isozymes. We nevertheless present a Fitch-Margoliash phylogeny constructed from pairwise distances. We employ this phylogeny as a vehicle for speculation on the evolution of the trypsinogen gene family as well as the general modes of evolution of multigene families. Unique attributes of the lamprey and tunicate trypsinogens are noted. Received: 12 July 1997  相似文献   

12.
Multiple phospholipase A2 (PLA2) isoenzymes found in a single snake venom induce a variety of pharmacological effects. These multiple forms are formed by gene duplication and accelerated evolution of exons. We examined the amino acid sequences of 127 snake venom PLA2 enzymes and their homologues to study in which location most natural substitutions occur. Our data show that hot spots of amino acid substitutions in this group of proteins occur mostly on the surface. A logistic model correlating the substitution rates of each amino acid residue with their surface accessibility indicates that the probability of natural substitutions occurring in the fully exposed residue is 2.6–3.5 times greater than that of substitutions occurring in buried residues. These surface substitutions play a significant role in the evolution of new PLA2 isoenzymes by altering the specificity of targeting to various tissues or cells, resulting in distinct pharmacological effects. Thus natural substitutions in PLA2 enzymes, in contrast to popular belief, are not random substitutions but appear to be directed toward modifying the molecular surface. Received: 11 May 1998 / Accepted: 29 June 1998  相似文献   

13.
The heat shock protein 70 kDa sequences (HSP70) are of great importance as molecular chaperones in protein folding and transport. They are abundant under conditions of cellular stress. They are highly conserved in all domains of life: Archaea, eubacteria, eukaryotes, and organelles (mitochondria, chloroplasts). A multiple alignment of a large collection of these sequences was obtained employing our symmetric-iterative ITERALIGN program (Brocchieri and Karlin 1998). Assessments of conservation are interpreted in evolutionary terms and with respect to functional implications. Many archaeal sequences (methanogens and halophiles) tend to align best with the Gram-positive sequences. These two groups also miss a signature segment [about 25 amino acids (aa) long] present in all other HSP70 species (Gupta and Golding 1993). We observed a second signature sequence of about 4 aa absent from all eukaryotic homologues, significantly aligned in all prokaryotic sequences. Consensus sequences were developed for eight groups [Archaea, Gram-positive, proteobacterial Gram-negative, singular bacteria, mitochondria, plastids, eukaryotic endoplasmic reticulum (ER) isoforms, eukaryotic cytoplasmic isoforms]. All group consensus comparisons tend to summarize better the alignments than do the individual sequence comparisons. The global individual consensus ``matches' 87% with the consensus of consensuses sequence. A functional analysis of the global consensus identifies a (new) highly significant mixed charge cluster proximal to the carboxyl terminus of the sequence highlighting the hypercharge run EEDKKRRER (one-letter aa code used). The individual Archaea and Gram-positive sequences contain a corresponding significant mixed charge cluster in the location of the charge cluster of the consensus sequence. In contrast, the four Gram-negative proteobacterial sequences of the alignment do not have a charge cluster (even at the 5% significance level). All eukaryotic HSP70 sequences have the analogous charge cluster. Strikingly, several of the eukaryotic isoforms show multiple mixed charged clusters. These clusters were interpreted with supporting data related to HSP70 activity in facilitating chaperone, transport, and secretion function. We observed that the consensus contains only a single tryptophan residue and a single conserved cysteine. This is interpreted with respect to the target rule for disaggregating misfolded proteins. The mitochondrial HSP70 connections to bacterial HSP70 are analyzed, suggesting a polyphyletic split of Trypanosoma and Leishmania protist mitochondrial (Mt) homologues separated from Mt-animal/fungal/plant homologues. Moreover, the HSP70 sequences from the amitochondrial Entamoeba histolytica and Trichomonas vaginalis species were analyzed. The E. histolytica HSP70 is most similar to the higher eukaryotic cytoplasmic sequences, with significantly weaker alignments to ER sequences and much diminished matching to all eubacterial, mitochondrial, and chloroplast sequences. This appears to be at variance with the hypothesis that E. histolytica rather recently lost its mitochondrial organelle. T. vaginalis contains two HSP70 sequences, one Mt-like and the second similar to eukaryotic cytoplasmic sequences suggesting two diverse origins. Received: 29 January 1998 / Accepted: 14 May 1998  相似文献   

14.
We have isolated and characterized for the first time, the SNBPs from an organism (Neofibularia nolitangere) of the phylum Porifera (Sponges). We have shown that these proteins consist of histones which, as expected, exhibit an amino acid composition very similar to that of other eukaryotic histones. The finding of histones in the sperm of these primitive organisms provides support to the notion that histones (SNBPs of the histone, H, type) were the proteins present at the onset of SNBP evolution. In contrast, a discrete number of alternative SNBP types (protamine-like, PL; protamine, P, types) seem to have appeared later on in the course of evolution and are found in both protostomes and deuterostomes, most likely as a result of processes of parallel evolution. Received: 5 March 1997 / Accepted: 6 March 1997  相似文献   

15.
The aldo-keto reductase enzymes comprise a functionally diverse gene family which catalyze the NADPH-dependant reduction of a variety of carbonyl compounds. The protein sequences of 45 members of this family were aligned and phylogenetic trees were deduced from this alignment using the neighbor-joining and Fitch algorithms. The branching order of these trees indicates that the vertebrate enzymes cluster in three groups, which have a monophyletic origin distinct from the bacterial, plant, and invertebrate enzymes. A high level of conservation was observed between the vertebrate hydroxysteroid dehydrogenase enzymes, prostaglandin F synthase, and ρ-crystallin of Xenopus laevis. We infer from the phylogenetic analysis that prostaglandin F synthase may represent a recent recruit to the eicosanoid biosynthetic pathway from the hydroxysteroid dehydrogenase pathway and furthermore that, in the context of gene recruitment, Xenopus laevisρ-crystallin may represent a shared gene. Received: 26 August 1996 / Accepted: 5 June 1997  相似文献   

16.
Mitochondrial genetic codons can be categorized by four patterns of nucleotide-site degeneracy based on varying combinations of twofold- or nondegenerate sites at first codon positions and twofold- or fourfold-degenerate sites at third codon positions. Herein, a model of molecular evolution is introduced that uses these patterns to calculate expected substitution frequencies for each codon position and substitution type relative to overall number of synonymous or nonsynonymous substitutions. Regions of the pocket gopher cytochrome oxidase subunit I (COI) and cytochrome b (cyt-b) genes are analyzed using this model. Chi-square distributions are used to produce relative goodness-of-fit (GF) scores for measuring the difference between substitution frequencies predicted by the codon-degeneracy model (CDM), and frequencies inferred using a well-supported phylogenetic tree of closely related species. The GF scores for expected and observed synonymous (GFsyn= 0.429, p= 0.807) and nonsynonymous (GFns= 2.309, p= 0.679) substitution frequencies resulted in a failure to reject the CDM as a null hypothesis for the molecular evolution of COI and cyt-b in pocket gophers. Alternative tree topologies and calculations of transition bias for these data result in higher GF scores. Received: 25 March 1999 / Accepted: 17 September 1999  相似文献   

17.
18.
The Artemia hemoglobin is a dimer comprising two nine-domain covalent polymers in quaternary association. Each polymer is encoded by a gene representing nine successive globin domains which have different sequences and are presumed to have been copied originally from a single-domain gene. Two different polymers exist as the result of a complete duplication of the nine-domain gene, allowing the formation of either homodimers or the heterodimer. The total population size of 18 domains comprising nine corresponding pairs, coupled with the probability that they reflect several hundred million years of evolution in the same lineage, provides a unique model in which the process of gene multiplication can be analyzed. The outcome has important implications for the reliability of local molecular clocks. The two polymers differ from each other at 11.7% of amino acid sites; however when corresponding individual domains are compared between polymers, amino acid substitution fluctuates by a factor of 2.7-fold from lowest to highest. This variation is not obvious at the DNA level: Domain pair identity values fluctuate by 1.3-fold. Identity values are, however, uncorrected for multiple substitutions, and both silent and nonsilent changes are pooled. Therefore, to determine the variability in relative substitution rates at the DNA level, we have used the method of Li (1993, J Mol Evol 36:96–99) to determine estimates of nonsynonymous (K A ) and synonymous (K S ) substitutions per site for the nine pairs of domains. As expected, the overall level of silent substitutions (K S of 56.9%) far exceeded nonsilent substitutions (K A of 6.7%); however, for corresponding domain pairs, K A fluctuates by 2.3-fold and K S by 1.7-fold. The large discrepancies reflected in the expressed protein have accrued within a single lineage and the implication is that divergence dates of different genera based on amino acid sequences, even with well-studied proteins of reasonable size, can be wrong by a factor well in excess of 2. Received: 4 June 1997 / Accepted: 17 December 1997  相似文献   

19.
Calmodulin is a calcium-binding EF-hand protein that is an activator of many enzymes as well as ion pumps and channels. Due to its multiple targets and its central role in the cell, understanding the evolutionary history of calmodulin genes should provide insights into the origin of genetic complexity in eukaryotes. We have previously isolated and characterized a calmodulin gene from the early-diverging chordate Branchiostoma lanceolatum (CaM1). In this paper, we report the existence of a second calmodulin gene (CaM2) as well as two CaM-like genomic fragments (CaML-2, CaML-3) in B. lanceolatum and a CaM2 and three CaM-like genes (CaML-1, CaML-2, CaML-3) in B. floridae. The CaM-like genes were isolated using low-stringency PCR. Surprisingly, the nucleotide sequences of the B. lanceolatum CaM1 and CaM2 cDNAs differ by 19.3%. Moreover, the CaM2 protein differs at two positions from the amino acid sequence of CaM1; the latter is identical to calmodulins in Drosophila melanogaster, the mollusc Aplysia californica, and the tunicate Halocynthia roretzi. The two B. lanceolatum CaM-like genes are more closely related to the CaM2 than to the CaM1 gene. This relationship is supported by the phylogenetic analyses and the identical exon/intron organization of these three genes, a relationship unique among animal CaM sequences. These data demonstrate the existence of a CaM multigene family in the cephalochordate Branchiostoma, which may have evolved independently from the multigene family in vertebrates. Received: 2 November 1999 / Accepted: 25 April 2000  相似文献   

20.
To investigate the causes and functional significance of rapid sex-determining protein evolution we compared three Caenorhabditis elegans genes encoding members of the protein phosphatase 2C (PP2C) family with their orthologs from another Caenorhabditis species (strain CB5161). One of the genes encodes FEM-2, a sex-determining protein, while the others have no known sex-determining role. FEM-2's PP2C domain was found to be more diverged than the other PP2C domains, supporting the notion that sex-determining proteins are subjected to selective pressures that allow for or cause rapid divergence. Comparison of the positions of amino acid substitutions in FEM-2 with a solved three-dimensional structure suggests that the catalytic face of the protein is highly conserved among C. elegans, CB5161, and another closely related species C. briggsae. However, the non-conserved regions of FEM-2 cannot be said to lack functional importance, since fem-2 transgenes from the other species were unable to rescue the germ-line defect caused by a C. elegans fem-2 mutation. To test whether fem-2 functions as a sex-determining gene in the other Caenorhabditis species we used RNA-mediated interference (RNAi). fem-2 (RNAi) in C. elegans and C. briggsae caused germ-line feminization, but had no noticeable effect in CB5161. Thus the function of fem-2 in CB5161 remains uncertain. Received: 11 April 2001 / Accepted: 6 August 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号