首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p67 is a lysosome-associated membrane protein-like lysosomal type I transmembrane glycoprotein in African trypanosomes. The p67 cytoplasmic domain (CD) is both necessary and sufficient for lysosomal targeting in procyclic insect-stage parasites. The p67CD contains two [DE]XXXL[LI]-type dileucine motifs, which function as lysosomal targeting signals in mammalian cells. Using a green fluorescent protein fusion to the p67 transmembrane and cytoplasmic domains as a reporter system, we investigated the role of these motifs in lysosomal targeting in procyclic trypanosomes. Pulse-chase turnover studies, steady-state immunolocalization and quantitative flow cytometry all gave consistent results. Mutagenesis of the membrane-distal dileucine motif impairs lysosomal trafficking leading to partial appearance of the reporter on the cell surface. Mutagenesis of the membrane-proximal motif has little effect on proper targeting. Simultaneous mutagenesis of both motifs results in quantitative delivery to the cell surface. Thus, the distal motif plays a dominant role, but both dileucine motifs are necessary for maximal lysosomal targeting. Additional studies suggest that the upstream acidic residues in each motif influence lysosomal targeting and may also affect forward trafficking in the early secretory pathway. These results strongly suggest an evolutionary conservation in lysosomal trafficking mechanisms in the ancient eukaryote Trypanosoma brucei.  相似文献   

2.
The juvenile form of ceroid lipofuscinosis (Batten disease) is a neurodegenerative lysosomal storage disorder caused by mutations in the CLN3 gene. CLN3 encodes a multimembrane-spanning protein of unknown function, which is mainly localized in lysosomes in non-neuronal cells and in endosomes in neuronal cells. For this study we constructed chimeric proteins of three CLN3 cytoplasmic domains fused to the lumenal and transmembrane domains of the reporter proteins LAMP-1 and lysosomal acid phosphatase to identify lysosomal targeting motifs and to determine the intracellular transport and subcellular localization of the chimera in transfected cell lines. We report that a novel type of dileucine-based sorting motif, EEEX(8)LI, present in the second cytoplasmic domain of CLN3, is sufficient for proper targeting to lysosomes. The first cytoplasmic domain of CLN3 and the mutation of the dileucine motif resulted in a partial missorting of chimeric proteins to the plasma membrane. At equilibrium, 4-13% of the different chimera are present at the cell surface. Analysis of lysosome-specific proteolytic processing revealed that lysosomal acid phosphatase chimera containing the second cytoplasmic domain of CLN3 showed the highest rate of lysosomal delivery, whereas the C terminus of CLN3 was found to be less efficient in lysosomal targeting. However, none of these cytosolic CLN3 domains was able to interact with AP-1, AP-3, or GGA3 adaptor complexes. These data revealed that lysosomal sorting motifs located in an intramolecular cytoplasmic domain of a multimembrane-spanning protein have different structural requirements for adaptor binding than sorting signals found in the C-terminal cytoplasmic domains of single- or dual-spanning lysosomal membrane proteins.  相似文献   

3.
CLN7 is a polytopic lysosomal membrane protein deficient in variant late infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disorder. In this study fluorescence protease protection assays and mutational analyses revealed the N‐ and C‐terminal tails of CLN7 in the cytosol and two N‐glycosylation sites at N371 and N376. Both partially and non‐glycosylated CLN7 were correctly transported to lysosomes. To identify lysosomal targeting motifs, we generated CD4‐chimera fused to the N‐ and C‐terminal domains of CLN7. Lysosomal localization of the chimeric proteins requires a consensus acidic dileucine‐based motif in the N‐terminus and two tandem tyrosine‐based signals in the C‐terminus. Mutation of these sorting motifs resulted in cell surface redistribution of CD4 chimeras. However, the dileucine‐based motif is of critical importance for lysosomal localization of the full‐length CLN7 in different cell lines. Cell surface biotinylation revealed that at equilibrium 22% of total CLN7 is localized at the plasma membrane. Mutation of the dileucine motif or the co‐expression of dominant‐negative mutant dynamin K44A led to a further increase of CLN7 at the plasma membrane. Our data demonstrate that CLN7 contains several cytoplasmic lysosomal targeting signals of which the N‐terminal dileucine‐based motif is required for the predominant lysosomal targeting along the indirect pathway and clathrin‐mediated endocytosis of CLN7.  相似文献   

4.
The NPC1 protein is a multipass transmembrane protein whose deficiency causes the autosomal recessive lipid storage disorder Niemann-Pick type C1. NPC1 localizes predominantly to late endosomes and has a dileucine motif located within a small cytoplasmic tail thought to target the protein to this location. Our data have suggested previously that the protein can reach its correct location in the absence of its cytoplasmic tail, suggesting that other signals contribute to NPC1 targeting. By using various FLAG-tagged and CD32-NPC1 chimeric fusion constructs, we show that multiple signals are responsible for the trafficking of NPC1 to the endosomal compartment, including the dileucine motif and a previously unidentified signal residing within the putative sterol-sensing domain transmembrane domain 3. Neither region alone was capable of directing heterologous CD32 fusions to late endosomes exclusively via the trans-Golgi network to the late endosome route taken by wild-type NPC1; transmembrane domain 3 was unable to maintain CD32 in late endosomes, indicating that two or more signals work in concert to target and retain NPC1 in this compartment. In addition we confirm that the tail dileucine motif is not essential for NPC1 targeting to late endosomes, and we discuss the implications of this finding along with the previously unappreciated role for transmembrane domain 3 in NPC1 localization and function.  相似文献   

5.
Batten disease is a neurodegenerative disorder resulting from mutations in CLN3, a polytopic membrane protein, whose predominant intracellular destination in nonneuronal cells is the lysosome. The topology of CLN3 protein, its lysosomal targeting mechanism, and the development of Batten disease are poorly understood. We provide experimental evidence that both the N and C termini and one large loop domain of CLN3 face the cytoplasm. We have identified two lysosomal targeting motifs that mediate the sorting of CLN3 in transfected nonneuronal and neuronal cells: an unconventional motif in the long C-terminal cytosolic tail consisting of a methionine and a glycine separated by nine amino acids [M(X)9G], and a more conventional dileucine motif, located in the large cytosolic loop domain and preceded by an acidic patch. Each motif on its own was sufficient to mediate lysosomal targeting, but optimal efficiency required both. Interestingly, in primary neurons, CLN3 was prominently seen both in lysosomes in the cell body and in endosomes, containing early endosomal antigen-1 along neuronal processes. Because there are few lysosomes in axons and peripheral parts of dendrites, the presence of CLN3 in endosomes of neurons may be functionally important. Endosomal association of the protein was independent of the two lysosomal targeting motifs.  相似文献   

6.
The adaptor protein complex AP-3 is involved in the sorting of lysosomal membrane proteins to late endosomes/lysosomes. It is unclear whether AP-3-containing vesicles form at the trans-Golgi network (TGN) or early endosomes. We have compared the trafficking routes of endolyn/CD164 and 'typical' lysosomal membrane glycoproteins (lgp120/lamp-1 and CD63/lamp-3) containing cytosolic YXXPhi-targeting motifs preceded by asparagine and glycine, respectively. Endolyn, which has a NYHTL-motif, is concentrated in lysosomes, but also occurs in endosomes and at the cell surface. We observed predominant interaction of the NYHTL-motif with the mu-subunits of AP-3 in the yeast two-hybrid system. Endolyn was mislocalized to the cell surface in AP-3-deficient pearl cells, confirming a major role of AP-3 in endolyn traffic. However, lysosomal delivery of endolyn (or a NYHTL-reporter), but not GYXXPhi-containing proteins, was practically abolished when AP-2-mediated endocytosis or traffic from early to late endosomes was inhibited in NRK and 3T3 cells. This indicates that endolyn is mostly transported along the indirect lysosomal pathway (via the cell surface), rather than directly from the TGN to late endosomes/lysosomes. Our results suggest that AP-3 mediates lysosomal sorting of some membrane proteins in early endosomes in addition to sorting of proteins with intrinsically strong AP-3-interacting lysosomal targeting motifs at the TGN.  相似文献   

7.
TMEM106B was identified as a major risk factor in a genome-wide association study for frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein (TDP)-43 pathology. The most significant association of TMEM106B single nucleotide polymorphisms with risk of FTLD-TDP was observed in patients with progranulin (GRN) mutations. Subsequent studies suggested an inverse correlation between TMEM106B expression and GRN levels in patient serum. However, in this study, this was not confirmed as we failed to detect a significant alteration of GRN levels upon knockdown or exogenous expression of TMEM106B in heterologous cells. To provide a basis for understanding TMEM106B function in health and disease, we investigated the membrane orientation and subcellular localization of this completely uncharacterized protein. By differential membrane extraction and sequential mutagenesis of potential N-glycosylation sites, we identified TMEM106B as a type 2 integral membrane protein with a highly glycosylated luminal domain. Glycosylation is partially required for the transport of TMEM106B beyond the endoplasmic reticulum to late cellular compartments. Endogenous as well as overexpressed TMEM106B localizes to late endosomes and lysosomes. Interestingly, the inhibition of vacuolar H(+)-ATPases significantly increased the levels of TMEM106B, a finding that may provide an unexpected biochemical link to GRN, because this protein is also strongly increased under the same conditions. Our findings provide a biochemical and cell biological basis for the understanding of the pathological role of TMEM106B in FTLD, an incurable neurodegenerative disorder.  相似文献   

8.
CLN3 is a transmembrane protein with a predominant localization in lysosomes in non-neuronal cells but is also found in endosomes and the synaptic region in neuronal cells. Mutations in the CLN3 gene result in juvenile neuronal ceroid lipofuscinosis or Batten disease, which currently is the most common cause of childhood dementia. We have recently reported that the lysosomal targeting of CLN3 is facilitated by two targeting motifs: a dileucine-type motif in a cytoplasmic loop domain and an unusual motif in the carboxyl-terminal cytoplasmic tail comprising a methionine and a glycine separated by nine amino acids (Kyttala, A., Ihrke, G., Vesa, J., Schell, M. J., and Luzio, J. P. (2004) Mol. Biol. Cell 15, 1313-1323). In the present study, we investigated the pathways and mechanisms of CLN3 sorting using biochemical binding assays and immunofluorescence methods. The dileucine motif of CLN3 bound both AP-1 and AP-3 in vitro, and expression of mutated CLN3 in AP-1- or AP-3-deficient mouse fibroblasts showed that both adaptor complexes are required for sequential sorting of CLN3 via this motif. Our data indicate the involvement of complex sorting machinery in the trafficking of CLN3 and emphasize the diversity of parallel and sequential sorting pathways in the trafficking of membrane proteins.  相似文献   

9.
Human cytomegalovirus (HCMV) is a widespread and persistent beta-herpesvirus. The large DNA genome of HCMV encodes many proteins that are non-essential for viral replication including numerous proteins subverting host immunosurveillance. One of them is the barely characterized UL20, which is encoded adjacent to the well-defined immunoevasins UL16 and UL18. UL20 is a type I transmembrane glycoprotein with an immunoglobulin-like ectodomain that is highly polymorphic among HCMV strains. Here, we show that the homodimeric UL20, by virtue of its cytoplasmic domain, does not reach the cell surface but is targeted to endosomes and lysosomes. Accordingly, UL20 exhibits a short half-life because of rapid lysosomal degradation. Trafficking of UL20 to lysosomes is determined by several, independently functioning dileucine-based sorting motifs in the cytoplasmic domain of UL20 and involves the adaptor protein (AP) complex AP-1. Combined substitution of three dileucine motifs allowed strong cell surface expression of UL20 comparable to UL20 mutants lacking the cytoplasmic tail. Finally, we show that the intracellularly located UL20 also is subject to lysosomal degradation in the context of viral infection. Altogether, from these data, we hypothesize that UL20 is destined to efficiently sequester yet-to-be defined cellular proteins for degradation in lysosomes.  相似文献   

10.
MLN64 is a transmembrane protein that shares homology with the cholesterol binding domain (START domain) of the steroidogenic acute regulatory protein. The steroidogenic acute regulatory protein is located in the inner membrane of mitochondria, where it facilitates cholesterol import into the mitochondria. Crystallographic analysis showed that the START domain of MLN64 is a cholesterol-binding domain. The present work was undertaken to determine which step of the intracellular cholesterol pathway MLN64 participates in. Using immunocytofluorescence, MLN64 colocalizes with LBPA, a lipid found specifically in late endosomes. Electron microscopy indicates that MLN64 is restricted to the limiting membrane of late endosomes. Microinjection or endocytosis of specific antibodies shows that the START domain of MLN64 is cytoplasmic. Deletion and mutagenesis experiments demonstrate that the amino-terminal part of MLN64 is responsible for its addressing. Although this domain does not contain conventional dileucine- or tyrosine-based targeting signals, we show that a dileucine motif (Leu(66)-Leu(67)) and a tyrosine residue (Tyr(89)) are critical for the targeting or the proper folding of the molecule. Finally, MLN64 colocalizes with cholesterol and Niemann Pick C1 protein in late endosomes. However, complementation assays show that MLN64 is not involved in the Niemann Pick C2 disease which, results in cholesterol lysosomal accumulation. Together, our results show that MLN64 plays a role at the surface of the late endosomes, where it might shuttle cholesterol from the limiting membrane to cytoplasmic acceptor(s).  相似文献   

11.
TMEM106B is a major risk factor for frontotemporal lobar degeneration with TDP‐43 pathology. TMEM106B localizes to lysosomes, but its function remains unclear. We show that TMEM106B knockdown in primary neurons affects lysosomal trafficking and blunts dendritic arborization. We identify microtubule‐associated protein 6 (MAP6) as novel interacting protein for TMEM106B. MAP6 over‐expression inhibits dendritic branching similar to TMEM106B knockdown. MAP6 knockdown fully rescues the dendritic phenotype of TMEM106B knockdown, supporting a functional interaction between TMEM106B and MAP6. Live imaging reveals that TMEM106B knockdown and MAP6 overexpression strongly increase retrograde transport of lysosomes in dendrites. Downregulation of MAP6 in TMEM106B knockdown neurons restores the balance of anterograde and retrograde lysosomal transport and thereby prevents loss of dendrites. To strengthen the link, we enhanced anterograde lysosomal transport by expressing dominant‐negative Rab7‐interacting lysosomal protein (RILP), which also rescues the dendrite loss in TMEM106B knockdown neurons. Thus, TMEM106B/MAP6 interaction is crucial for controlling dendritic trafficking of lysosomes, presumably by acting as a molecular brake for retrograde transport. Lysosomal misrouting may promote neurodegeneration in patients with TMEM106B risk variants.  相似文献   

12.
Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes   总被引:4,自引:3,他引:1  
Mutations in the mucolipin-1 gene have been linked to mucolipidosis type IV, a lysosomal storage disorder characterized by severe neurological and ophthalmologic abnormalities. Mucolipin-1 is a membrane protein containing six putative transmembrane domains with both its N- and C-termini localized facing the cytosol. To gain information on the sorting motifs that mediate the trafficking of this protein to lysosomes, we have generated chimeras in which the N- and C- terminal tail portions of mucolipin-1 were fused to a reporter gene. In this article, we report the identification of two separate di-leucine-type motifs that co-operate to regulate the transport of mucolipin-1 to lysosomes. One di-leucine motif is positioned at the N-terminal cytosolic tail and mediates direct transport to lysosomes, whereas the other di-leucine motif is found at the C-terminal tail and functions as an adaptor protein 2-dependent internalization motif. We have also found that the C-terminal tail of mucolipin-1 is palmitoylated and that this modification might regulate the efficiency of endocytosis. Finally, the mutagenesis of both di-leucine motifs abrogated lysosomal accumulation and resulted in cell-surface redistribution of mucolipin-1. Taken together, these results reveal novel information regarding the motifs that regulate mucolipin-1 trafficking and suggest a role for palmitoylation in protein sorting.  相似文献   

13.
Amyloid plaques are formed by aggregates of amyloid-beta-peptide, a 37-43-amino acid fragment (primarily Abeta(40) and Abeta(42)) generated by proteolytic processing of the amyloid precursor protein (APP) by beta- and gamma-secretases. A type I transmembrane aspartyl protease, BACE (beta-site APP cleaving enzyme), has been identified to be the beta-secretase. BACE is targeted through the secretory pathway to the plasma membrane where it can be internalized to endosomes. The carboxyl terminus of BACE contains a di-leucine-based signal for sorting of transmembrane proteins to endosomes and lysosomes. In this study, we set out to determine whether BACE is degraded by the lysosomal pathway and whether the di-leucine motif is necessary for targeting BACE to the lysosomes. Here we show that lysosomal inhibitors, chloroquine and NH(4)Cl, lead to accumulation of endogenous and ectopically expressed BACE in a variety of cell types, including primary neurons. Furthermore, the inhibition of lysosomal hydrolases results in the redistribution and accumulation of BACE in the late endosomal/lysosomal compartments (lysosome-associated membrane protein 2 (LAMP2)-positive). In contrast, the BACE-LL/AA mutant, in which Leu(499) and Leu(500) in the COOH-terminal sequence (DDISLLK) were replaced by alanines, only partially co-localized with LAMP2-positive compartments following inhibition of lysosomal hydrolases. Collectively, our data indicate that BACE is transported to the late endosomal/lysosomal compartments where it is degraded via the lysosomal pathway and that the di-leucine motif plays a role in sorting BACE to lysosomes.  相似文献   

14.
Lysosomal membrane glycoprotein termed LGP85 or LIMP II extends a COOH-terminal cytoplasmic tail of R459GQGSMDEGTADERAPLIRT478, in which an L475 I476 sequence lies as a di-leucine-based motif for lysosomal targeting. In the present study, we explored the role of the I476 residue in the localization of LGP85 to the endocytic organelles using two substitution mutants called I476A and I476L in which alanine and leucine are replaced at I476, respectively, and I476R477T478-deleted LGP85 called Delta 476-478. Immunofluorescence analyses showed that I476A and I476L are largely colocalized in intracellular organelles with an endogenous late endosomal and lysosomal marker, LAMP-1, but there were some granules in which staining for the LGP85 mutants was prominent, while Delta 476-478 is detected in LAMP-1-positive and LAMP-1-negative intracellular organelles, and on the cell surface. The subcellular fractionation studies revealed that I476A, I476L, and Delta 476-478 are different from wild-type LGP85 in the distribution of early endosomes, late endosomes, and lysosomes. I476A and I476L are present more in late endosomes than in the densest lysosomes, whereas wild-type LGP85 is mainly lysosomal. Substitution of I476 for A and L differentially modified the ratios of late endosomal to lysosomal LGP85. A major portion of Delta 476-478 resided in the light buoyant density fraction containing plasma membrane and early endosomes. Taken together, these results indicate that the existence of the 476th amino acid residue is essential for localization of LGP85 to late endocytic compartments. The fact that isoleucine but not leucine is in the 476th position is especially of importance in the proper distribution of LGP85 in late endosomes and lysosomes.  相似文献   

15.
It has been reported that an accumulation of cholesterol within late endosomes/lysosomes in Niemann-Pick type C (NPC) fibroblasts and U18666A-treated cells causes impairment of retrograde trafficking of the cation-independent mannose 6-phosphate/IGF-II receptor (MPR300) from late endosomes to the trans-Golgi network (TGN). In apparent conflict with these results, here we show that as in normal fibroblasts, MPR300 localizes exclusively to the TGN in NPC fibroblasts as well as in normal fibroblasts treated with U18666A. This localization can explain why several lysosomal properties and functions, such as intracellular lysosomal enzyme activity and localization, the biosynthesis of cathepsin D, and protein degradation, are all normal in NPC fibroblasts. These results, therefore, suggest that the accumulation of cholesterol in late endosomes/lysosomes does not affect the retrieval of MPR300 from endosomes to the TGN. Furthermore, treatment of normal and NPC fibroblasts with chloroquine, which inhibits membrane traffic from early endosomes to the TGN, resulted in a redistribution of MPR300 to EEA1 and internalized transferrin-positive, but LAMP-2-negative, early-recycling endosomes. We propose that in normal and NPC fibroblasts, MPR300 is exclusively targeted from the TGN to early endosomes, from where it rapidly recycles back to the TGN without being delivered to late endosomes. This notion provides important insights into the definition of late endosomes, as well as the biogenesis of lysosomes.  相似文献   

16.
The precise trafficking routes followed by newly synthesized lysosomal membrane proteins after exit from the Golgi are unclear. To study these events we created a novel chimera (YAL) having a lumenal domain comprising two tyrosine sulfation motifs fused to avidin, and the transmembrane and cytoplasmic domains of lysosome associated membrane protein 1 (Lamp1). The newly synthesized protein rapidly transited from the trans- Golgi Network (TGN) to lysosomes (t(1/2) approximately 30 min after a lag of 15-20 min). However, labeled chimera was captured by biotinylated probes endocytosed for only 5 min, indicating that the initial site of entry into the endocytic pathway was early endosomes. Capture required export of YAL from the TGN, and endocytosis of the biotinylated reagent, and was essentially quantitative within 2 h of chase, suggesting that all molecules were following an identical route. There was no evidence of YAL trafficking via the cell surface. Fusion of TGN-derived vesicles with 5 min endosomes could be recapitulated in vitro, but neither late endosomes nor lysosomes could serve as acceptor compartments. This suggests that contrary to previous conclusions, most if not all newly synthesized Lamp1 traffics from the TGN to early endosomes prior to delivery to late endosomes and lysosomes.  相似文献   

17.
Selective autophagy underlies many of the important physiological roles that autophagy plays in multicellular organisms, but the mechanisms involved in cargo selection are poorly understood. Here we describe a molecular mechanism that can target conventional endosomes for autophagic degradation. We show that the human transmembrane protein TMEM59 contains a minimal 19‐amino‐acid peptide in its intracellular domain that promotes LC3 labelling and lysosomal targeting of its own endosomal compartment. Interestingly, this peptide defines a novel protein motif that mediates interaction with the WD‐repeat domain of ATG16L1, thus providing a mechanistic basis for the activity. The motif is represented with the same ATG16L1‐binding ability in other molecules, suggesting a more general relevance. We propose that this motif may play an important role in targeting specific membranous compartments for autophagic degradation, and therefore it may facilitate the search for adaptor proteins that promote selective autophagy by engaging ATG16L1. Endogenous TMEM59 interacts with ATG16L1 and mediates autophagy in response to Staphylococcus aureus infection.  相似文献   

18.
Lysosomes are the site of degradation of obsolete intracellular material during autophagy and of extracellular macromolecules following endocytosis and phagocytosis. The membrane of lysosomes and late endosomes is enriched in highly glycosylated transmembrane proteins of largely unknown function. Significant progress has been made in recent years towards elucidating the pathways by which these lysosomal membrane proteins are delivered to late endosomes and lysosomes. While some lysosomal membrane proteins follow the constitutive secretory pathway and reach lysosomes indirectly via the cell surface and endocytosis, others exit the trans-Golgi network in clathrin-coated vesicles for direct delivery to endosomes and lysosomes. Sorting from the Golgi or the plasma membrane into the endosomal system is mediated by signals encoded by the short cytosolic domain of these proteins. This review will discuss the role of lysosomal membrane proteins in the biogenesis of the late endosomal and lysosomal membranes, with particular emphasis on the structural features and molecular mechanisms underlying the intracellular trafficking of these proteins.  相似文献   

19.
Autophagy maintains cellular homeostasis by targeting damaged organelles, pathogens, or misfolded protein aggregates for lysosomal degradation. The autophagic process is initiated by the formation of autophagosomes, which can selectively enclose cargo via autophagy cargo receptors. A machinery of well‐characterized autophagy‐related proteins orchestrates the biogenesis of autophagosomes; however, the origin of the required membranes is incompletely understood. Here, we have applied sensitized pooled CRISPR screens and identify the uncharacterized transmembrane protein TMEM41B as a novel regulator of autophagy. In the absence of TMEM41B, autophagosome biogenesis is stalled, LC3 accumulates at WIPI2‐ and DFCP1‐positive isolation membranes, and lysosomal flux of autophagy cargo receptors and intracellular bacteria is impaired. In addition to defective autophagy, TMEM41B knockout cells display significantly enlarged lipid droplets and reduced mobilization and β‐oxidation of fatty acids. Immunostaining and interaction proteomics data suggest that TMEM41B localizes to the endoplasmic reticulum (ER). Taken together, we propose that TMEM41B is a novel ER‐localized regulator of autophagosome biogenesis and lipid mobilization.  相似文献   

20.
Storjohann L  Holst B  Schwartz TW 《Biochemistry》2008,47(35):9198-9207
A highly conserved feature across all families of 7TM receptors is a disulfide bridge between a Cys residue located at the extracellular end of transmembrane segment III (TM-III) and one in extracellular loop 2 (ECL-2). The zinc sensor GPR39 contains four Cys residues in the extracellular domains. By using mutagenesis, treatment with the reducing agent TCEP, and a labeling procedure for free sulfhydryl groups, we identify the pairing of these Cys residues in two disulfide bridges: the prototypical bridge between Cys (108) in TM-III and Cys (210) in ECL-2 and a second disulfide bridge connecting Cys (11) in the N-terminal domain with Cys (191) in ECL-2. Disruption of the conserved disulfide bond by mutagenesis greatly reduced the level of cell surface expression and eliminated agonist-induced increases in inositol phosphate production but surprisingly enhanced constitutive signaling. Disruption of the nonconserved disulfide bridge by mutagenesis led to an increase in the Zn (2+) potency. This phenotype, with an approximate 10-fold increase in agonist potency and a slight increase in E max, was mimicked by treatment of the wild-type receptor with TCEP at low concentrations, which had no effect on the receptor already lacking the second disulfide bridge and already displaying a high Zn (2+) potency. We conclude that the second disulfide bridge, which according to the beta2-adrenergic structure will form a covalent link across the entrance to the main ligand binding pocket, serves to dampen GPR39 activation. We suggest that formation of extra disulfide bridges may be an important general mechanism for regulating the activity of 7TM receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号