首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in limb dynamics during the practice of rapid arm movements   总被引:4,自引:0,他引:4  
In our study we examined Bernstein's hypothesis that practice alters the motor coordination among the muscular and passive joint moments. In particular, we conducted dynamical analyses of a human multisegmental movement during the practice of a task involving the upper extremity. Seven male human volunteers performed maximal-speed, unrestrained vertical arm movements whose upward and downward trajectories between two target endpoints required the hand to round a barrier, resulting in complex shoulder, elbow, and wrist joint movements. These movements were recorded by high-speed ciné film, and myopotentials from selected upper-extremity muscles were recorded. The arm was modeled as interconnected rigid bodies, so that dynamical interactions among the upper arm, forearm, and hand could be calculated. With practice, subjects achieved significantly shorter movement times. As movement times decreased, all joint-moment components (except gravity) increased, and the moment-time and EMG profiles were changed significantly. Particularly during reversals in movement direction, the changes in moment-time and EMG profiles were consistent with Bernstein's hypothesis relating practice effects and intralimb coordination: with practice, motor coordination was altered so that individuals employed reactive phenomena in such a way as to use muscular moments to counterbalance passive-interactive moments created by segment movements.  相似文献   

2.
Grip force adjustments to changes of object loading induced by external changes of the direction of gravity during discrete arm movements with a grasped object were analyzed during normal and anesthetized finger sensibility. Two subjects were seated upright in a rotatable chair and rotated backwards into a horizontal position during discrete movements with a hand-held instrumented object. The movement direction varied from vertical to horizontal inducing corresponding changes in the direction of gravity, but the orientation of the movement in relation to the body remained unaffected. During discrete vertical movements a maximum of load force occurs early in upward and late in downward movements; during horizontal movements two load force peaks result from both acceleratory and deceleratory phases of the movement. During performance with normal finger sensibility grip force was modulated in parallel with fluctuations of load force during vertical and horizontal movements. The grip force profile adopted to the varying load force profile during the transition from the vertical to the horizontal position. The maximum grip force occurred at the same time of maximum load force irrespective of the movement plane. During both subjects' first experience of digital anesthesia the object slipped from the grasp during rotation to the horizontal plane. During the following trials with anesthetized fingers subjects substantially increased their grip forces, resulting in elevated force ratios between maximum grip and load force. However, grip force was still modulated with the movement-induced load fluctuations and maximum grip force coincided with maximum load force during vertical and horizontal movements. This implies that the elevated force ratio between maximum grip and load force does not alter the feedforward system of grip force control. Cutaneous afferent information from the grasping digits seems to be important for the economic scaling of the grip force magnitude according to the actual loading conditions and for reactive grip force adjustments in response to load perturbations. However, it plays a subordinate role for the precise anticipatory temporal coupling between grip and load forces during voluntary object manipulation.  相似文献   

3.
Grip force adjustments to changes of object loading induced by external changes of the direction of gravity during discrete arm movements with a grasped object were analyzed during normal and anesthetized finger sensibility. Two subjects were seated upright in a rotatable chair and rotated backwards into a horizontal position during discrete movements with a hand-held instrumented object. The movement direction varied from vertical to horizontal inducing corresponding changes in the direction of gravity, but the orientation of the movement in relation to the body remained unaffected. During discrete vertical movements a maximum of load force occurs early in upward and late in downward movements; during horizontal movements two load force peaks result from both acceleratory and deceleratory phases of the movement. During performance with normal finger sensibility grip force was modulated in parallel with fluctuations of load force during vertical and horizontal movements. The grip force profile adopted to the varying load force profile during the transition from the vertical to the horizontal position. The maximum grip force occurred at the same time of maximum load force irrespective of the movement plane. During both subjects' first experience of digital anesthesia the object slipped from the grasp during rotation to the horizontal plane. During the following trials with anesthetized fingers subjects substantially increased their grip forces, resulting in elevated force ratios between maximum grip and load force. However, grip force was still modulated with the movement-induced load fluctuations and maximum grip force coincided with maximum load force during vertical and horizontal movements. This implies that the elevated force ratio between maximum grip and load force does not alter the feedforward system of grip force control. Cutaneous afferent information from the grasping digits seems to be important for the economic scaling of the grip force magnitude according to the actual loading conditions and for reactive grip force adjustments in response to load perturbations. However, it plays a subordinate role for the precise anticipatory temporal coupling between grip and load forces during voluntary object manipulation.  相似文献   

4.
Head movements induced by motor cortex stimulation in the cat are accompanied by variations in the vertical force exerted by each limb. These postural responses were found to show stereotyped patterns: with head dorsiflexions an increase was observed in the force exerted by the anterior limbs and a decrease at the posterior limb level. From comparison between the latencies of the force variations, the beginning of head acceleration, and EMG activity in the limb extensor muscles, it was concluded that triggering of these postural responses is not reflex, but depends on the same command as the movement itself. This early response might be a means of avoiding the downward movement of the trunk which would otherwise result from the reaction force corresponding to the upward head movement.  相似文献   

5.
The purpose of this study is to investigate the asymmetry of dominant and non-dominant arms regarding reaction time (RT), velocity, force and power generated during ballistic target-directed movements. Fifty six, right-handed young males performed protractile movements with both arms separately by pushing a joystick towards a target-line as quickly and as accurately as possible. Participants performed 21 repetitions with each hand. The temporal, spatial, kinetic and kinematic parameters were computed. All movements were grouped regarding their accuracy (when joystick fell short, stopped precisely or overreached the target). Each group of movements was analyzed separately and the data obtained was compared across groups. The results showed that although the left arm was less accurate than the right one, it reached the target significantly faster, developing greater average force and power. The forces of acceleration and deceleration of the left arm were greater too. We did not observe a significant lateral difference in RT in situations when the arm fell short of the target, or stopped precisely on the target. It was only when the target was overreached that the left arm displayed a significantly greater RT than the right one. We explain the results from the asymmetry of motor behavior in favor of the influence of both hemispheres in this process.  相似文献   

6.
The aim of this study was to investigate if trunk muscle activation patterns during rapid bilateral shoulder flexions are affected by movement amplitude. Eleven healthy males performed shoulder flexion movements starting from a position with arms along sides (0°) to either 45°, 90° or 180°. EMG was measured bilaterally from transversus abdominis (TrA), obliquus internus (OI) with intra-muscular electrodes, and from rectus abdominis (RA), erector spinae (ES) and deltoideus with surface electrodes. 3D kinematics was recorded and inverse dynamics was used to calculate the reactive linear forces and torque about the shoulders and the linear and angular impulses. The sequencing of trunk muscle onsets at the initiation of arm movements was the same across movement amplitudes with ES as the first muscle activated, followed by TrA, RA and OI. All arm movements induced a flexion angular impulse about the shoulders during acceleration that was reversed during deceleration. Increased movement amplitude led to shortened onset latencies of the abdominal muscles and increased level of activation in TrA and ES. The activation magnitude of TrA was similar in acceleration and deceleration where the other muscles were specific to acceleration or deceleration. The findings show that arm movements need to be standardized when used as a method to evaluate trunk muscle activation patterns and that inclusion of the deceleration of the arms in the analysis allow the study of the relationship between trunk muscle activation and direction of perturbing torque during one and the same arm movement.  相似文献   

7.
Kinematics variables of pointing movements where assessed in five adult subjects exposed acutely (30 min) and chronically (10 days) to a low O2 mixture (13.5% O2 in N2). Amplitude of displacement did not vary in both experimental conditions but movement duration markedly increased compared to pre and post exposure conditions. While in acute hypoxia the times of acceleration and deceleration are almost equal, in chronic hypoxia deceleration time exceeded of 100 ms the time of acceleration. The time from the peak acceleration to the peak of deceleration ("switch" time) increased in both experimental conditions and was about 50% of the movement duration. This time lengthening at hypoxia may be explained either by alteration of propioceptive loops or by a different strategy elaborated by the CNS to generally slow accurate movements.  相似文献   

8.
An otolith organ on ground behave as a detector of both gravity and linear acceleration, and play an important role in controlling posture and eye movement for tilt of the head or translational motion. On the other hand, a gravitational acceleration ingredient to an otolith organ disappears in microgravity environment. However, linear acceleration can be received by otolith organ and produce a sensation that is different from that on Earth. It is suggested that in microgravity signal from the otolith organ may cause abnormality of posture control and eye movement. We examined function of otolith organ in goldfish revealed from analysis of eye movement induced by linear acceleration. We analyzed vertical eye movements from video images frame by frame. In normal fish, leftward lateral acceleration induced downward eye rotation in the left eye and upward eye rotation in the right eye. Acceleration from caudal to rostra1 evoked downward eye rotation in both eyes. When the direction of acceleration was shifted 15 degrees left, the responses in the left eye disappeared. These results suggested that otolith organs in each side transmitted different signals.  相似文献   

9.
This paper presents some elementary principles regarding constraints on movements, which may be useful in modeling and interpreting motor control strategies for skilled movements. Movements which are optimum with respect to various objectives, or “costs”, are analyzed and compared. The specific costs considered are related to movement time, distance, peak velocity, energy, peak acceleration, and rate of change of acceleration (jerk). The velocity patterns for the various minimum cost movements are compared with each other and with some skilled movement patterns. The concept of performance trade-offs between competing objectives is used to interpret the distance-time relationships observed in skilled movements. Examples of arm movements during violin bowing and jaw movements during speech are used to show how skilled movements are influenced by considerations of physical economy, or “ease”, of movement. Minimum-cost solutions for the various costs, which include the effect of frictional forces, are given in Appendices.  相似文献   

10.
The aim of this study was to investigate the effects of agonist and antagonist muscle fatigue on the performance of rapid, self-terminating movements. Six subjects performed rapid, consecutive elbow flexion and extension movements between two targets prior to and after fatiguing either the elbow flexor or elbow extensor muscles. The experiments demonstrated consistent results. Agonist muscle fatigue was associated with a decrease in peak velocity and peak deceleration, while a decrease in peak acceleration was particularly prominent. Antagonist muscle fatigue, however, was associated with a decrease in peak deceleration, while a decrease in both the peak velocity and peak acceleration was modest and, in some tests, non-significant. The relative acceleration time (i.e. acceleration time as a proportion of the total movement time) increased when agonists were fatigued, but decreased when antagonists were fatigued. Taken together, these results emphasize the mechanical roles of the agonist and antagonist muscles; namely, the fatigue of each muscle group particularly affected the movement phase in which that group accelerated a limb, while changes of the movement kinematics pattern provided more time for action of the fatigued muscles. In addition, the results presented suggest that agonist muscle fatigue affects movement velocity more than antagonist muscle fatigue, even in movements that demonstrate prominently both mechanical and myoelectric activity of the antagonist muscles, such as rapid, self-terminating movements. Accepted: 11 February 1997  相似文献   

11.
Movements of the head and of the mandible relative to the head were measured in human subjects walking and running on a treadmill at various speeds and inclinations. A miniature magnet and piezo-electric accelerometer assembly was mounted on the mandibular incisors, and a Hall-effect sensor along with a second accelerometer mounted on a maxillary incisor along a common vertical axis. Signals from these sensors provided continuous records of vertical head and mandible acceleration, and relative jaw position. Landing on the heel or on the toe in different forms of locomotion was followed by rapid deceleration of the downward movement of the head and slightly less rapid deceleration of the downward movement of the mandible, i.e., the mandible moved downwards relative to the maxilla, then upwards again to near its normal posture within 200 ms. No tooth contact occurred in any forms of gait at any inclination. The movement of the mandible relative to the maxilla depended on the nature and velocity of the locomotion and their effects on head deceleration. The least deceleration and hence mandibular displacement occurred during toe-landing, for example, during "uphill" running. The maximum displacement of the mandible relative to the head was less than 1mm, even at the fastest running speed. The mechanisms that limit the vertical movements of the jaw within such a narrow range are not known, but are likely to include passive soft-tissue visco-elasticity and stretch reflexes in the jaw-closing muscles.  相似文献   

12.
We studied the dynamics of lexical decisions by asking participants to categorize lexical and nonlexical stimuli and recording their mouse movements toward response buttons during the choice. In a previous report we revealed greater trajectory curvature and attraction to competitors for Low Frequency words and Pseudowords. This analysis did not clarify whether the trajectory curvature in the two conditions was due to a continuous dynamic competition between the response alternatives or if a discrete revision process (a "change of mind") took place during the choice from an initially selected response to the opposite one. To disentangle these two possibilities, here we analyse the velocity and acceleration profiles of mouse movements during the choice. Pseudowords'' peak movement velocity occurred with 100ms delay with respect to words and Letters Strings. Acceleration profile for High and Low Frequency words and Letters Strings exhibited a butterfly plot with one acceleration peak at 400ms and one deceleration peak at 650ms. Differently, Pseudowords'' acceleration profile had double positive peaks (at 400 and 600ms) followed by movement deceleration, in correspondence with changes in the decision from lexical to nonlexical response buttons. These results speak to different online processes during the categorization of Low Frequency words and Pseudowords, with a continuous competition process for the former and a discrete revision process for the latter.  相似文献   

13.
Studies on the effect of temperature on whole-animal performance traits other than locomotion are rare. Here we investigate the effects of temperature on the performance of the turtle feeding apparatus in a defensive context. We measured bite force and the kinematics of snapping in the Common Snapping Turtle (Chelydra serpentina) over a wide range of body temperatures. Bite force performance was thermally insensitive over the broad range of temperatures typically experienced by these turtles in nature. In contrast, neck extension (velocity, acceleration, and deceleration) and jaw movements (velocity, acceleration, and deceleration) showed clear temperature dependence with peak acceleration and deceleration capacity increasing with increasing temperatures. Our results regarding the temperature dependence of defensive behavior are reflected by the ecology and overall behavior of this species. These data illustrate the necessity for carefully controlling T(b) when carrying out behavioral and functional studies on turtles as temperature affects the velocity, acceleration, and deceleration of jaw and neck extension movements. More generally, these data add to the limited but increasing number of studies showing that temperature may have important effects on feeding and defensive performance in ectotherms.  相似文献   

14.
It has been shown that target-pointing arm movements without visual feedback shift downward in space microgravity and upward in centrifuge hypergravity. Under gravity changes in aircraft parabolic flight, however, arm movements have been reported shifting upward in hypergravity as well, but a downward shift under microgravity is contradicted. In order to explain this discrepancy, we reexamined the pointing movements using an experimental design which was different from prior ones. Arm-pointing movements were measured by goniometry around the shoulder joint of subjects with and without eyes closed or with a weight in the hand, during hyper- and microgravity in parabolic flight. Subjects were fastened securely to the seat with the neck fixed and the elbow maintained in an extended position, and the eyes were kept closed for a period of time before each episode of parabolic flight. Under these new conditions, the arm consistently shifted downward during microgravity and mostly upward during hypergravity, as expected. We concluded that arm-pointing deviation induced by parabolic flight could be also be valid for studying the mechanism underlying disorientation under varying gravity conditions.  相似文献   

15.
The spatial and temporal aspects of movement variability have typically been studied separately. As a result the relationship between spatial and temporal variabilities remains largely unknown. In two experiments we examined the evolution and covariation of spatial and temporal variabilities over variations in the duration of reciprocal aiming movements. Experiments differed in settings: In Experiment 1 participants moved unperturbed whereas in Experiment 2 they were confronted with an elastic force field. Different movement durations—for a constant inter-target distance—were either evoked by imposing spatial accuracy constraints while requiring participants to move as fast as possible, or prescribed by means of an auditory metronome while requiring participants to maximize spatial accuracy. Analyses focused on absolute and relative variabilities, respectively captured by the standard deviation (SD) and the coefficient of variation (CV = SD/mean). Spatial variability (both SDspace and CVspace) decreased with movement duration, while temporal variability (both SDtime and CVtime) increased with movement duration. We found strong negative correlations between spatial and temporal variabilities over variations in movement duration, whether the variability examined was absolute or relative. These findings observed at the level of the full movement contrasted with the findings observed at the level of the separate acceleration and deceleration phases of movement. During the separate acceleration and deceleration phases both spatial and temporal variabilities (SD and CV) were found to increase with their respective durations, leading to positive correlations between them. Moreover, variability was generally larger at the level of the constituent movement phases than at the level of the full movement. The general pattern of results was robust, as it emerged in both tasks in each of the two experiments. We conclude that feedback mechanisms operating to maximize task performance are subjected to a form of competition between spatial and temporal variabilities.  相似文献   

16.
Most object manipulation tasks involve a series of actions demarcated by mechanical contact events, and gaze is usually directed to the locations of these events as the task unfolds. Typically, gaze foveates the target 200 ms in advance of the contact. This strategy improves manual accuracy through visual feedback and the use of gaze-related signals to guide the hand/object. Many studies have investigated eye-hand coordination in experimental and natural tasks; most of them highlighted a strong link between eye movements and hand or object kinematics. In this experiment, we analyzed gaze strategies in a collision task but in a very challenging dynamical context. Participants performed collisions while they were exposed to alternating episodes of microgravity, hypergravity and normal gravity. First, by isolating the effects of inertia in microgravity, we found that peak hand acceleration marked the transition between two modes of grip force control. Participants exerted grip forces that paralleled load force profiles, and then increased grip up to a maximum shifted after the collision. Second, we found that the oculomotor strategy adapted visual feedback of the controlled object around the collision, as demonstrated by longer durations of fixation after collision in new gravitational environments. Finally, despite large variability of arm dynamics in altered gravity, we found that saccades were remarkably time-locked to the peak hand acceleration in all conditions. In conclusion, altered gravity allowed light to be shed on predictive mechanisms used by the central nervous system to coordinate gaze, hand and grip motor actions during a mixed task that involved transport of an object and high impact loads.  相似文献   

17.
Analysis of variability of fast aimed movements predicts the properties of trajectory variance. The analysis is based on a kinematic model with nonlinear changes in “internal time”. The purpose of the work was to identify different sources of variability and their influence on the trajectory variance. An analytical expression for the speed-accuracy trade-off is introduced. Experiments were performed with subjects making single-joint elbow flexion movements over different distances as fast as possible with their eyes closed to memorized targets. Standard deviation of movement trajectory increased during the first part of the movement and subsequently decreased. The variance peaked after the time of peak velocity, close to the time of peak deceleration. A dependence of the trajectory variance on movement distance (speed-accuracy trade-off) was seen during the movement (at times of peak velocity and peak deceleration) but not after the movement termination. We conclude that the previously reported drop in the variability of movement trajectory during the deceleration phase does not necessarily mean a compensation by the control system but may result from purely kinematic properties of the movement. The importance of the time of measurement for analysis of the speed-accuracy trade-offs is emphasized.  相似文献   

18.
Steller sea lions are highly maneuverable marine mammals (expressed as minimum turning radius). Video recordings of turns ( n = 195) are analyzed from kinematic measurements for three captive animals. Speed-time plots of 180° turns have a typical "V-shape." The sea lions decelerated during the first half of the turn, reached a minimum speed in the middle of the curved trajectory and reaccelerated by adduction of the pectoral flippers. The initial deceleration was greater than that for passive gliding due to pectoral flipper braking and/or change in body contour from a stiff, straight streamlined form. Centripetal force and thrust were determined from the body acceleration. Most thrust was produced during the power phase of the pectoral flipper stroke cycle. Contrary to previous findings on otariids, little or no thrust was generated during initial abduction of the pectoral flippers and during the final drag-based paddling phase of the stroke cycle. Peak thrust force at the center of gravity occurs halfway through the power phase and the centripetal force is maximal at the beginning of the power stroke. Performance is modulated by changes in the duration and intensity of movements without changing their sequence. Turning radius, maximum velocity, maximum acceleration and turning duration were 0.3 body lengths, 3.5 m/s, 5 m/s2, and 1.6 s, respectively. The relative maneuverability based on velocity and length specific minimum turning radius is comparable to other otariids, superior to cetaceans but inferior to many fish.  相似文献   

19.
In labor and sport physiology a great deal of interest concerns the conceptual model of governance of both rapid and precise target-directed movements. Widely known in the theory of motor control, Fitts' paradigm determines the time of motion, calculated from the distance to the target and the diameter of the target. However this paradigm does not take into account the time of preparation for movement, which can have a significant impact on accuracy. In addition, the literature highlights little evidence of temporal and spatial asymmetry in the production of fast and accurate movements. The aim of our work was to investigate the influence of the duration of the preparatory phase (reaction time - T(R)) and duration of protractile motion of the arm (T(M)) on the speed and accuracy of movement. Also, the in-dividual asymmetry of the temporal characteristics and accuracy of performance of movements were studied. We measured three aspects of translational motion of the arm to the computerized target: reaction time (T(R), s), time of motion of the arm (T(M), s), and error in the achievement of the target (deltaL, mm). The group of participants consisted of 12 healthy, right-handed, untrained girls, each of whom completed 5 series of 10 discrete movements by each of the left and right arms. Mathematical analysis of the results revealed the existence of five models of performance. Each model was represented in the participant's performance with different probability. The combination of high speed and high precision when the arm moved towards the target was found only in model 5, which combines a long period of preparation for the movement (T(R)) and a short time of motion (T(M)). The probability of its occurrence in the untrained subjects was very low (2-3%). We suggest that it may be possible to develop special methods of training, geared towards the ability to increase the probability of appearance of this model. Asymmetry of motor action appeared clearly evident only in the parameter of accuracy (right arm committed the least errors), especially when the reaction time (T(R)) and movement time (T(M)) were close to average values of the sample. This result enables us to recommend this method for the determination of "handedness". The results allow us to conclude that in the process of development of new motor skills which include both precise and rapid movements we must take into account the initial values of reaction time. We also think that Fitts' existing formula should be modified by including the parameter of reaction time.  相似文献   

20.
Summary Free flying honeybees were conditioned to moving black and white stripe patterns. Bees learn rapidly to distinguish the direction of movement in the vertical and horizontal plane.After being trained to a moving pattern bees do not discriminate the moving alternative from a stationary one. There is no significant velocity discrimination for patterns moving in the same direction.For vertical movements there are clear asymmetries in the spontaneous choice preference and in the learning curves for patterns moving upward or downward.After bees are trained to a stationary pattern they can discriminate it from an upward moving alternative. Learning curves involving movement are generally biphasic, suggesting different adaptive systems depending on the number of rewards.The flight pattern of bees which are trained to movement changes during the process of learning. At the beginning of the learning procedure bees reveal an optokinetic response to the moving patterns, this response is strongly reduced after a number of rewards on a moving pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号