首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ability of regulatory factors to access their nucleosomal targets is modulated by nuclear proteins such as histone H1 and HMGN (previously named HMG-14/-17 family) that bind to nucleosomes and either stabilize or destabilize the higher-order chromatin structure. We tested whether HMGN proteins affect the interaction of histone H1 with chromatin. Using microinjection into living cells expressing H1–GFP and photobleaching techniques, we found that wild-type HMGN, but not HMGN point mutants that do not bind to nucleosomes, inhibits the binding of H1 to nucleosomes. HMGN proteins compete with H1 for nucleosome sites but do not displace statically bound H1 from chromatin. Our results provide evidence for in vivo competition among chromosomal proteins for binding sites on chromatin and suggest that the local structure of the chromatin fiber is modulated by a dynamic interplay between nucleosomal binding proteins.  相似文献   

3.
4.
5.
6.
Proliferating cell nuclear antigen (PCNA) is a ubiquitous protein that interacts with multiple partners and regulates nuclear activities, including chromatin assembly, histone modifications, replication, and DNA damage repair. The role of specific partners in regulating PCNA activities is not fully understood. Here we identify the nucleosome binding protein HMGN1 as a new PCNA-interacting protein that enhances the binding of PCNA to chromatin but not to purified DNA. Two tetrapeptides in the conservative domain of HMGN1 contain amino acids necessary for the binding of HMGN1 to PCNA. Deletion of both tetrapeptides abolishes the HMGN1-PCNA interaction. PCNA preferentially binds to the linker DNA adjacent to an HMGN-containing nucleosome. In living cells, loss of HMGN1 decreases the rate of PCNA recruitment to damaged DNA sites. Our study identifies a new factor that facilitates the interaction of PCNA with chromatin and provides insights into mechanisms whereby nucleosome binding architectural proteins affect the cellular phenotype.  相似文献   

7.
Recent studies indicate that most nuclear proteins, including histone H1 and HMG are highly mobile and their interaction with chromatin is transient. These findings suggest that the structure of chromatin is dynamic and the protein composition at any particular chromatin site is not fixed. Here we discuss how the dynamic behavior of the nucleosome binding HMGN proteins affects the structure and function of chromatin. The high intranuclear mobility of HMGN insures adequate supply of protein throughout the nucleus and serves to target these proteins to their binding sites. Transient interactions of the proteins with nucleosomes destabilize the higher order chromatin, enhance the access to nucleosomal DNA, and impart flexibility to the chromatin fiber. While roaming the nucleus, the HMGN proteins encounter binding partners and form metastable multiprotein complexes, which modulate their chromatin interactions. Studies with HMGN proteins underscore the important role of protein dynamics in chromatin function.  相似文献   

8.
9.
The HMGN proteins are a group of non-histone nuclear proteins that associate with the core nucleosome and alter the structure of the chromatin fiber. We investigated the distribution of the three best characterized HMGN family members, HMGN1, HMGN2 and HMGN3 during mouse eye development. HMGN1 protein is evenly distributed in all ocular structures of 10.5 days post-coitum (dpc) mouse embryos however, by 13.5dpc, relatively less HMGN1 is detected in the newly formed lens fiber cells compared to other cell types. In the adult, HMGN1 is detected throughout the retina and lens, although in the cornea, HMGN1 protein is predominately located in the epithelium. HMGN2 is also abundant in all ocular structures of mouse embryos, however, unlike HMGN1, intense immunolabeling is maintained in the lens fiber cells at 13.5dpc. In the adult eye, HMGN2 protein is still found in all lens nuclei while in the cornea, HMGN2 protein is mostly restricted to the epithelium. In contrast, the first detection of HMGN3 in the eye is in the presumptive corneal epithelium and lens fiber cells at 13.5dpc. In the lens, HMGN3 remained lens fiber cell preferred into adulthood. In the cornea, HMGN3 is transiently upregulated in the stroma and endothelium at birth while its expression is restricted to the corneal epithelium in adulthood. In the retina, HMGN3 upregulates around 2 weeks of age and is found at relatively high levels in the inner nuclear and ganglion cell layers of the adult retina. RT-PCR analysis determined that the predominant HMGN3 splice form found in ocular tissues is HMGN3b which lacks the chromatin unfolding domain although HMGN3a mRNA is also detected. These results demonstrate that the HMGN class of chromatin proteins has a dynamic expression pattern in the developing eye.  相似文献   

10.
Numerous nuclear proteins bind to chromatin by targeting unique DNA sequences or specific histone modifications. In contrast, HMGN proteins recognize the generic structure of the 147-bp nucleosome core particle. HMGNs alter the structure and activity of chromatin by binding to nucleosomes; however, the determinants of the specific interaction of HMGNs with chromatin are not known. Here we use systematic mutagenesis, quantitative fluorescence recovery after photobleaching, fluorescence imaging, and mobility shift assays to identify the determinants important for the specific binding of these proteins to both the chromatin of living cells and to purified nucleosomes. We find that several regions of the protein affect the affinity of HMGNs to chromatin; however, the conserved sequence RRSARLSA, is the sole determinant of the specific interaction of HMGNs with nucleosomes. Within this sequence, each of the 4 amino acids in the R-S-RL motif are the only residues absolutely essential for anchoring HMGN protein to nucleosomes, both in vivo and in vitro. Our studies identify a new chromatin-binding module that specifically recognizes nucleosome cores independently of DNA sequence or histone tail modifications.  相似文献   

11.
12.
13.
14.
We have demonstrated that levels of specific modification in histone H3 are modulated by members of the nucleosome-binding high mobility group N (HMGN) protein family in a variant-specific manner. HMGN1 (but not HMGN2) inhibits the phosphorylation of both H3S10 and H3S28, whereas HMGN2 enhances H3K14 acetylation more robustly than HMGN1. Two HMGN domains are necessary for modulating chromatin modifications, a non-modification-specific domain necessary for chromatin binding and a modification-specific domain localized in the C terminus of the HMGNs. Thus, chromatin-binding structural proteins such as HMGNs affect the levels of specific chromatin modifications and therefore may play a role in epigenetic regulation.  相似文献   

15.
The interactions of nuclear lamins with the chromatin fiber play an important role in regulating nuclear architecture and chromatin function; however, the full spectrum of these interactions is not known. We report that the N-terminal domain of the nucleosome-binding protein HMGN5 interacts with the C-terminal domain of the lamin-binding protein LAP2α and that these proteins reciprocally alter their interaction with chromatin. Chromatin immunoprecipitation analysis of cells lacking either HMGN5 or LAP2α reveals that loss of either protein affects the genome-wide distribution of the remaining partner. Our study identifies a new functional link between chromatin-binding and lamin-binding proteins.  相似文献   

16.
Here we demonstrate that HMGN1, a nuclear protein that binds to nucleosomes and reduces the compaction of the chromatin fiber, modulates histone posttranslational modifications. In Hmgn1-/- cells, loss of HMGN1 elevates the steady-state levels of phospho-S10-H3 and enhances the rate of stress-induced phosphorylation of S10-H3. In vitro, HMGN1 reduces the rate of phospho-S10-H3 by hindering the ability of kinases to modify nucleosomal, but not free, H3. During anisomycin treatment, the phosphorylation of HMGN1 precedes that of H3 and leads to a transient weakening of the binding of HMGN1 to chromatin. We propose that the reduced binding of HMGN1 to nucleosomes, or the absence of the protein, improves access of anisomysin-induced kinases to H3. Thus, the levels of posttranslational modifications in chromatin are modulated by nucleosome binding proteins that alter the ability of enzymatic complexes to access and modify their nucleosomal targets.  相似文献   

17.
18.
Chromatin unfolding and activation by HMGN(*) chromosomal proteins.   总被引:10,自引:0,他引:10  
  相似文献   

19.
20.
Postnikov YV  Belova GI  Lim JH  Bustin M 《Biochemistry》2006,45(50):15092-15099
Here we demonstrate that HMGN1, a nuclear protein that binds specifically to nucleosomes, modulates the level of histone H2A phosphorylation. In Hmgn1-/- cells, loss of HMGN1 elevates the steady-state levels of H2AS1ph throughout the cell cycle. In vitro, HMGN1 reduces the rate of Rsk2- and Msk1-mediated phosphorylation of nucleosomal, but not free, histone H2A. HMGN1 inhibits H2A phosphorylation by binding to nucleosomes since an HMGN mutant, which cannot bind to chromatin, does not inhibit the Rsk2- mediated H2A phosphorylation. HMGN2 also inhibits H2A phosphorylation, suggesting that the inhibition of H2A phosphorylation is not specific to only one member of this protein family. Thus, the present data add modifications of histone H2A to the list of histone modifications affected by HMGN proteins. It supports the suggestion that structural chromatin binding proteins can modify the whole profile of post-translational modifications of core histones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号