首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S‐promoter, and the phytase activity was measured in the mature grains, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T2‐generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19‐fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase activities were increased significantly by 110‐fold (52 000 FTU/kg) and 57‐fold (51 000 FTU/kg), respectively. The HvPAPhy_a‐transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature grains as feed to increase the release of bio‐available phosphate and minerals bound to the phytate of the grains; secondly, the utilization of the powdered straw either directly or phytase extracted hereof as a supplement to high phytate feed or food; and finally, the use of the stubble to be ploughed into the soil for mobilizing phytate‐bound phosphate for plant growth.  相似文献   

2.
Around 70% of total seed phosphorus is represented by phytate which must be hydrolysed to be bioavailable in non-ruminant diets. The limited endogenous phytase activity in non-ruminant animals make it common practice to add an exogenous phytase source to most poultry and pig feeds. The mature grain phytase activity (MGPA) of cereal seeds provides a route for the seeds themselves to contribute to phytate digestion, but MGPA varies considerably between species and most varieties in current use make negligible contributions. Currently, all phytases used for feed supplementation and transgenic improvement of MGPA are derived from microbial enzymes belonging to the group of histidine acid phosphatases (HAP). Cereals contain HAP phytases, but the bulk of MGPA can be attributed to phytases belonging to a completely different group of phosphatases, the purple acid phosphatases (PAPhy). In recent years, increased MGPAs were achieved in cisgenic barley holding extra copies of barley PAPhy and in the wheat HIGHPHY mutant, where MGPA was increased to ~6200 FTU/kg. In the present study, the effect of replacing 33%, 66% and 100% of a standard wheat with HIGHPHY wheat was compared with a control diet with and without 500 FTU of supplemental phytase. Diets were compared by evaluating broiler performance, ileal Ca and P digestibility and tibia development, using nine replicate pens of four birds per diet over 3 weeks from hatch. There were no differences between treatments in any tibia or bird performance parameters, indicating the control diet did not contain sufficiently low levels of phosphorus to distinguish effect of phytase addition. However, in a comparison of the two wheats, the ileal Ca and P digestibility coefficients for the 100% HIGHPHY wheat diets are 22.9% and 35.6% higher, respectively, than for the control diet, indicating the wheat PAPhy is functional in the broiler digestive tract. Furthermore, 33% HIGHPHY replacement of conventional wheat, significantly improved Ca and P digestibility over the diet-supplemented exogenous phytase, probably due to the higher phytase activity in the HIGHPHY diet (1804 v. 1150 FTU). Full replacement by HIGHPHY gave 14.6% and 22.8% higher ileal digestibility coefficients for Ca and P, respectively, than for feed supplemented with exogenous HAP phytase at 500 FTU. This indicates that in planta wheat PAPhys has promising potential for improving P and mineral digestibility in animal feed.  相似文献   

3.
In the present study, we utilized TALEN- and CRISPR/Cas9-induced mutations to analyze the promoter of the barley phytase gene HvPAPhy_a. The purpose of the study was dual, validation of the PAPhy_a enzyme as the main contributor of the mature grain phytase activity (MGPA), as well as validating the importance of a specific promoter region of the PAPhy_a gene which contains three overlapping cis-acting regulatory elements (GCN4, Skn1 and the RY-element) known to be involved in gene expression during grain filling. The results confirm that the barley PAPhy_a enzyme is the main contributor to the MGPA as grains of knock-out lines show very low MGPA. Additionally, the analysis of the HvPAPhy_a promoter region containing the GCN4/Skn1/RY motif highlights its importance for HvPAPhy_a expression as the MGPA in grains of plant lines with mutations within this motif is significantly reduced. Interestingly, lines with deletions located downstream of the motif show even lower MGPA levels, indicating that the GCN4/SKn1/RY motif is not the only element responsible for the level of PAPhy_a expression during grain maturation. Mutant grains with very low MPGA showed delayed germination as compared to grains of wild type barley. As grains with high levels of preformed phytases would provide more readily available phosphorous needed for a fast germination, this indicates that faster germination may be implicated in the positive selection of the ancient PAPhy gene duplication that lead to the creation of the PAPhy_a gene.  相似文献   

4.
5.
The production of deoxynivalenol, acetyl deoxynivalenol and zearalenone by Fusarium culmorum and F. graminearum on autoclave-sterilized grain (maize, rice, wheat and barley) was investigated. Fusarium culmorum produced significantly greater levels of toxins than F. graminearum. The four substrates examined differed in their ability to support toxin production. Toxin production on maize and rice was significantly greater than toxin production on barley or wheat.  相似文献   

6.
Phytase activity in grain is essential to make phosphate available to cell metabolism, and in food and feed. Cereals contain the purple acid phosphatase type of phytases (PAPhy). Mature wheat grain is dominated by TaPAPhy_a which, in the present work, has been characterized by extensive peptide and glycopeptide sequencing by mass spectrometry. Seven N-linked glycosylation sites were found. Three of these sites were dominated by variant forms of the XylMan3FucGlcNAc2, i.e. the HRP-type of glycan. Complex-type glycans with one or two additional GlcNAc were observed, however in trace amounts only. At four sites the glycan consisted of a single GlcNAc residue. The mature protein is ca. 500 residues in size and appears to be truncated at the N- and C-termini.  相似文献   

7.
In developing grains of rice (Oryza sativa L.) of the dormant variety H4, peroxidase activity decreased sharply about a week before grain maturity without any change in grain dormancy and oxygen uptake of intact grain. During storage or after-ripening of mature dormant intact grains of four varieties (H4, H6, Mayang Ebos and Seraup 27) at 25–30°, the critical range in peroxidase activity was 1·0–1·4 μmol purpurogallin/hr/grain above which rice grains were almost completely dormant and below which the grains were almost completely nondormant. The oxygen uptake of intact H4 grain tended to decrease during the loss of dormancy. The decrease in both the peroxidase activity and oxygen uptake could be attributed mainly to the lower activities of the hull. Dehulling of developing and mature H4 grains reduced dormancy and increased the oxygen uptake of the grain. Thus, reduction by the hull of the level of oxygen available to the dehulled grain (embryo) was mainly responsible for grain dormancy in rice.  相似文献   

8.
The cisgenesis concept implies that plants are transformed only with their own genetic materials or genetic materials from closely related species capable of sexual hybridization. Furthermore, foreign sequences such as selection genes and vector-backbone sequences should be absent. We used a barley phytase gene (HvPAPhy_a) expressed during grain filling to evaluate the cisgenesis concept in barley. The marker gene elimination method was used to obtain marker-free plant lines. Here, the gene of interest and the selection gene are flanked by their own T-DNA borders to allow unlinked integration of the two genes. We analysed the transformants for co-transformation efficiency, increased phytase activities in the grain, integration of the kanamycin resistance gene of the vector-backbone and segregation between the HvPAPhy_a insert and the hygromycin resistance gene. The frequencies of the four parameters imply that it should be possible to select 11 potentially cisgenic T(1) -lines out of the 72 T(0) -lines obtained, indicating that the generation of cisgenic barley is possible at reasonable frequencies with present methods. We selected two potential cisgenic lines with a single extra copy of the HvPAPhy_a insert for further analysis. Seeds from plants homozygous for the insert showed 2.6- and 2.8-fold increases in phytase activities and the activity levels were stable over the three generations analysed. In one of the selected lines, the flanking sequences from both the left and right T-DNA borders were analysed. These sequences confirmed the absence of truncated vector-backbone sequences linked to the borders. The described line should therefore be classified as cisgenic.  相似文献   

9.
Cereal purple acid phosphatase-type phytases, PAPhy, play an essential role in making phosphate accessible to mammalian digestion and reducing the environmental impact of manure. Studying the potential of PAPhy requires easy access to the enzymes. For that purpose wheat and barley isophytases have been expressed in Pichia pastoris from constructs encoding the alpha-mating factor at the N-termini and a His? tag before the stop codon in all constructs. A protein chemical study of a C-terminally truncated recombinant wheat phytase, r-TaPAPhy_b2, was carried out to clarifying the posttranslational processing of proteins secreted from P. pastoris. Extensive mass spectrometric sequencing of tryptic, chymotryptic and AspN derived peptides of both the native and endoH deglycosylated forms showed: (i) All mating factor derived sequence had been removed and further unspecific proteolysis left highly heterogeneous N-terminal variant forms of r-TaPAPhy; (ii) The His? tag had been retained or slightly truncated; (iii) All seven potential N-glycan sites were glycosylated except for two sites which were partially glycosylated by ca. 90% and 30%; (iv) Among the nine cysteine residues of this phytase, the most N-terminal residue is free, whereas the remaining eight appear to be disulfide bonded. It is noteworthy that already the first step in ESI-MS/MS sequencing had fragmented the hyper glycosylated peptides into free Z, Y and X mass spectrometric glycan fragments attached to the peptide.  相似文献   

10.
The effects of germination temperature on the growth of barley seedlings for phytase production were studied at 15, 20 and 25 degrees C for 6-10 days. The growth rate of the barley seedlings was increased as the germination temperature was increased. The initial rate of total protein production was closely coupled to that of the barley growth, and the rate of total protein production tended to increase as the germination temperature was increased. SDS-PAGE analysis of total protein from the barley seedlings showed time-dependent appearance and disappearance of protein bands. Although no significant phytase activity was detected at zero time of germination, a significant increase in phytase activity up to 7.9-fold occurred during the first several days of germination then decreased. Phosphate production (viz. phytate degradation) in the barley seedlings occurred rapidly at the beginning of germination. However, the rate of production continued to decrease with further germination. A time lag of about 1-2 days between the rate of total protein production and that of phytase production was observed. Unlike the extent of total protein production, that of phytase production was similar irrespective of germination temperature. Partial purification of a crude enzyme extract by hydrophobic interaction chromatography resulted in two phytase fractions (PI and PII). Zymogram analysis demonstrated that PI had two bands with molecular masses of about 66 and 123 kDa while PII had one band corresponding to a molecular mass of about 96 kDa. The optimal temperature for PI was found to be 55 degrees C, while it was 50 degrees C for PII. The enzyme fraction PI had a pH optimum at 6.0, whereas the optimum pH for PII was found to be 5.0. Addition of 0.1% (v/v) Tween 80 was found to increase enzyme activity significantly (i.e., 167% for PI and 137% for PII). Phytate in cereals including barley, rice, corn and soybean degraded effectively by the treatment of the barley phytases.  相似文献   

11.
At present, little is known about the phytases of plant seeds in spite of the fact that this group of enzymes is the primary determinant for the utilization of the major phosphate storage compound in seeds, phytic acid. We report the cloning and characterization of complementary DNAs (cDNAs) encoding one of the groups of enzymes with phytase activity, the multiple inositol phosphate phosphatases (MINPPs). Four wheat cDNAs (TaPhyIIa1, TaPhyIIa2, TaPhyIIb and TaPhyIIc) and three barley cDNAs (HvPhyIIa1, HvPhyIIa2 and HvPhyIIb) were isolated. The open reading frames ranged from 1548 to 1554 bp and the level of homology between the barley and wheat proteins ranged from 90.5% to 91.9%. All cDNAs contained an N-terminal signal peptide encoding sequence, and a KDEL-like sequence, KTEL, was present at the C-terminal, indicating that the enzyme was targeted to and retained within the endoplasmic reticulum. Expression of TaPhyIIa2 and HvPhyIIb in Escherichia coli revealed that the MINPPs possessed a significant phytase activity with narrow substrate specificity for phytate. The pH and temperature optima for both enzymes were pH 4.5 and 65 degrees C, respectively, and the K(m) values for phytate were 246 and 334 microm for the wheat and barley recombinant enzymes, respectively. The enzymes were inhibited by several metal ions, in particular copper and zinc. The cDNAs showed significantly different temporal and tissue-specific expression patterns during seed development and germination. With the exception of TaPhyIIb, the cDNAs were present during late seed development and germination. We conclude that MINPPs constitute a significant part of the endogenous phytase potential of the developing and germinating barley and wheat seeds.  相似文献   

12.
Interspecific interactions and soil nitrogen supply levels affect intercropping productivity. We hypothesized that interspecific competition can be alleviated by increasing N application rate and yield advantage can be obtained in competitive systems. A field experiment was conducted in Wuwei, Gansu province in 2007 and 2008 to study intercropping of faba bean/maize, wheat/maize, barley/maize and the corresponding monocultures of faba bean (Vicia faba L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and maize (Zea mays L.) with N application rates of 0, 75, 150, 225 and 300 kg N ha?1. Total land equivalent ratios (TLER) were 1.22 for faba bean/maize, 1.16 for wheat/maize, and 1.13 for barley/maize intercropping over the 2-year study period. Maize was overyielding when intercropped with faba bean, but underyielding when intercropped with wheat or barley according to partial land equivalent ratios (PLER) based on grain yields of individual crops in intercropping and sole cropping. There was an interspecific facilitation between intercropped faba bean and maize, and interspecific competition between maize and either wheat or barley. The underyielding of maize was higher when intercropped with barley than with wheat. Fertilizer N alleviated competitive interactions in intercrops with adequate fertilizer N at 225 kg ha?1. Yield advantage of intercropping can be acquired with adequate nitrogen supply, even in an intensive competitive system such as barley/maize intercropping. This is important when using intercropping to develop intensive farming systems with high inputs and high outputs.  相似文献   

13.
模拟酸雨对农作物种子萌发和幼苗生长的影响   总被引:28,自引:1,他引:28  
研究模拟酸雨对3种农作物种子萌发年和幼苗生长的影响。结果表明:不同pH值(2.5,4.5,5.6)的模拟酸雨对水稻和小麦的种子萌发没有影响,但明显抑制了玉米种子萌发。模拟酸雨条件下,3种农作物幼苗的生长受到抑制,生物量减少,叶绿素和类胡萝卜素含量下降,而叶绿素a/b的变化却不明显。pH4.5和5.6的模拟酸雨对玉米Fv/Fm、光化学猝灭(qP)的影响较小,非光化学猝灭(NPQ)却明显下降,表明酸雨伤害了植物PSⅡ天线对激发能的非辐射耗散能力。  相似文献   

14.
Scutella separated from germinating grains of barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) took up the four amino acids and the three peptides tested from incubation media. The uptake of amino acids by wheat scutella was similar to that of barley scutella and was via at least four uptake systems: two nonspecific amino acid uptake systems, one system specific for proline, and another system specific for basic amino acids. The scutellum of rice apparently has two nonspecific systems and a system specific for the basic amino acids, but the proline-specific system is lacking. The scutellum of maize seems to have the same systems as the scutellum of rice, but one (or both) of the nonspecific systems differs from that of the other species studied in taking up arginine only slowly. No great differences were observed in the uptake of peptides in the four species studied. The rates of uptake of different amino acids and peptides were of the same order of magnitude in the four cereals. The fact that carboxypeptidase activities in the endosperms of wheat and barley are 20-to 100-fold higher than those in rice and maize, does thus not seem to be reflected in the uptake properties of the scutella.  相似文献   

15.
16.
17.
Dai F  Qiu L  Ye L  Wu D  Zhou M  Zhang G 《PloS one》2011,6(4):e18829

Background

Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity.

Methodology/Principal Findings

Quantitative trait loci (QTL) analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP) gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy.

Conclusions/Significance

It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains.  相似文献   

18.
The effect of Leptocorisa oratorius (F.) on the yield, grain quality, and seed viability of four rice, Oryza sativa L., lines was studied. Three of the lines, C2, IR64, and PSBRc20, are grown in the Philippines. The fourth, IR72164-201-1 is an unreleased experimental line of an O. sativa japonica x O. sativa indica cross. Each line was exposed to four infestation densities for 21 d. L. oratorius feeding produced unfilled and partially filled grains, resulting in a negative correlation of yield to rice bug density. When filled grains were sown, germination rates were negatively correlated with rice bug densities. The percentage of discolored grains was positively correlated with L. oratorius density on all rice lines. At the same infestation rates, PSBRc20 and IR64 had higher yields, less damaged grain, and higher germination rates than IR72164-201-1 and C2, suggesting host plant tolerance to rice bug feeding. The economic injury levels (EILs) currently used for rice bug management are based solely on yield loss estimates. The results of this study suggest that EIL for rice bugs should be revised to take into account reductions in grain quality and seed germination rates in addition to yield loss.  相似文献   

19.
Genotypes of cereal grains, including winter barley (n = 21), maize (n = 27), oats (n = 14), winter rye (n = 22), winter triticale (n = 21) and winter wheat (n = 29), were assayed for their chemical composition and physical characteristics as part of the collaborative research project referred to as GrainUp. Genotypes of one grain species were grown on the same site, except maize. In general, concentrations of proximate nutrients were not largely different from feed tables. The coefficient of variation (CV) for the ether extract concentration of maize was high because the data pool comprised speciality maize bred for its high oil content. A subset of 8 barley, 20 rye, 20 triticale and 20 wheat samples was analysed to differ significantly in several carbohydrate fractions. Gross energy concentration of cereal grains could be predicted from proximate nutrient concentration with good accuracy. The mean lysine concentration of protein was the highest in oats (4.2 g/16 g N) and the lowest in wheat (2.7 g/16 g N). Significant differences were also detected in the concentrations of macro elements as well as iron, manganese, zinc and copper. Concentrations of arsenic, cadmium and lead were below the limit of detection. The concentration of lower inositol phosphates was low, but some inositol pentaphosphates were detected in all grains. In barley, relatively high inositol tetraphosphate concentration also was found. Intrinsic phytase activity was the highest in rye, followed by triticale, wheat, barley and maize, and it was not detectable in oats. Substantial differences were seen in the thousand seed weight, test weight, falling number and extract viscoelasticity characteristics. The study is a comprehensive overview of the composition of different cereal grain genotypes when grown on the same location. The relevance of the variation in composition for digestibility in different animal species will be subject of other communications.  相似文献   

20.
Li W  Gill BS 《Genetics》2002,160(3):1153-1162
The Sh2/A1 orthologous region of maize, rice, and sorghum contains five genes in the order Sh2, X1, X2, and two A1 homologs in tandem duplication. The Sh2 and A1 homologs are separated by approximately 20 kb in rice and sorghum and by approximately 140 kb in maize. We analyzed the fate of the Sh2/A1 region in large-genome species of the Triticeae (wheat, barley, and rye). In the Triticeae, synteny in the Sh2/A1 region was interrupted by a break between the X1 and X2 genes. The A1 and X2 genes remained colinear in homeologous chromosomes as in other grasses. The Sh2 and X1 orthologs also remained colinear but were translocated to a nonhomeologous chromosome. Gene X1 was duplicated on two nonhomeologous chromosomes, and surprisingly, a paralog shared homology much higher than that of the orthologous copy to the X1 gene of other grasses. No tandem duplication of A1 homologs was detected but duplication of A1 on a nonhomeologous barley chromosome 6H was observed. Intergenic distances expanded greatly in wheat compared to rice. Wheat and barley diverged from each other 12 million years ago and both show similar changes in the Sh2/A1 region, suggesting that the break in colinearity as well as X1 duplications and genome expansion occurred in a common ancestor of the Triticeae species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号