首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Heterocyst-forming filamentous cyanobacteria, such as Anabaena variabilis ATCC 29413, require molybdenum as a component of two essential cofactors for the enzymes nitrate reductase and nitrogenase. A. variabilis efficiently transported (99)Mo (molybdate) at concentrations less than 10(-9) M. Competition experiments with other oxyanions suggested that the molybdate-transport system of A. variabilis also transported tungstate but not vanadate or sulfate. Although tungstate was probably transported, tungsten did not function in place of molybdenum in the Mo-nitrogenase. Transport of (99)Mo required prior starvation of the cells for molybdate, suggesting that the Mo-transport system was repressed by molybdate. Starvation, which required several generations of growth for depletion of molybdate, was enhanced by growth under conditions that required synthesis of nitrate reductase or nitrogenase. These data provide evidence for a molybdate storage system in A. variabilis. NtcA, a regulatory protein that is essential for synthesis of nitrate reductase and nitrogenase, was not required for transport of molybdate. The closely related strain Anabaena sp. PCC 7120 transported (99)Mo in a very similar way to A. variabilis.  相似文献   

4.
Formate dehydrogenase (FDH) (EC 1.2.1.43) from C. thermoaceticum has been purified in two forms. One contains tungsten (W), and the other is enriched in molybdenum (Mo). The W-FDH is clearly active, while the Mo results are ambiguous with enzymatic activities generally lower in the Mo-enriched samples. Spectroscopic studies (EPR, absorption, and CD) on W-FDH and Mo-FDH demonstrate that no signal correlates to the group VI metal active site in the dithionite-reduced enzyme. This lack of a W(V) EPR signal is in contrast to the results observed for tungsten-substituted sulfite oxidase which is inactive.  相似文献   

5.
The nitrogenase activity in Rhodospirillum rubrum was changed when the cells were made either Mo-deficient or when Mo was replaced by tungsten (W) as trace element in the growth medium: In the absence of N2, normal Mo cells evolved H2 (via nitrogenase) from added malate in the light faster than W cells, which in turn evolved H2 faster than Mo-deficient cells. In the presence of N2, on the other hand, nitrogen fixation rate in W cells was very close to the low rate found with Mo-deficient cells. Incubation after harvesting of Mo-deficient cells with 2×10-5 M molybdate or tungstate stimulated the H2 evolution (similarly with both trace elements) as well as the N2 fixation (Mo was more effective than W). This indicates that the nitrogenase activity of W cells was truly caused by W and not merely by remaining traces of Mo. The ATP consumption is apparently higher with a W-containing nitrogenase than with the normal Mo-nitrogenase. Further, the affinity to N2 of the W cells seems to be lower than with the Mo cells.  相似文献   

6.
7.
The anaerobic expression of pfl is reduced both in a strain mutated in the pgi gene and in a pfkA pfkB double mutant strain when cells are grown in medium supplemented with glucose. When cells are grown in medium supplemented with either fructose or pyruvate, no reduction is observed in these strains. The amount of pyruvate in the cells may be responsible for the reduced expression of pfl in the strains mutated in the genes encoding the glycolytic enzymes. Because of the lowered oxygen concentration in the medium, the expression of pfl is induced when an exponentially growing culture enters the stationary phase. This induction is increased when the Casamino Acid concentration is raised 10-fold or when the medium is supplemented with NaCl. Superhelicity of DNA is decreased in a pgi mutant strain grown in medium supplemented with glucose. The superhelicity is also changed, but the opposite way, in a wild-type strain grown in medium supplemented with Casamino Acids at a high concentration or 0.3 M sodium chloride. Our data show that changes in superhelicity do not affect the aerobic expression of pfl but might be important for the anaerobic induction of pfl.  相似文献   

8.
When Escherichia coli was grown in the presence of tungstate, inactive forms of two molybdoenzymes, nitrate reductase and formate dehydrogenase, accumulated and were converted to their active forms upon incubation of cell suspensions with molybdate and chloramphenicol. The conversion to the active enzymes did not occur in cell extracts. When incubated with [(99)Mo]molybdate and chloramphenicol, the tungstate-grown cells incorporated (99)Mo into protein components which were released from membranes by procedures used to release nitrate reductase and formate dehydrogenase and which migrated with these activities on polyacrylamide gels. Although neither activity was formed during incubation of the crude extract with molybdate, (99)Mo was incorporated into protein components which were released from the membrane fraction under the same conditions and were similar to the active enzymes in their electrophoretic properties. The in vitro incorporation of (99)Mo occurred specifically into these components and was equal to or greater than the amount incorporated in vivo under the same conditions. Molybdenum in preformed, active nitrate reductase and formate dehydrogenase did not exchange with [(99)Mo]molybdate, demonstrating that the observed incorporation depended on the demolybdo forms of the enzymes. We conclude that molybdate may be incorporated into the demolybdo forms both in vivo and in vitro; some unknown additional factor or step, required for active enzyme formation, occurs in vivo but not in vitro under the conditions employed.  相似文献   

9.
The Gram-positive anaerobe Eubacterium acidaminophilum contains at least two tungsten-dependent enzymes: viologen-dependent formate dehydrogenase and aldehyde dehydrogenase. (185)W-Labeled tungstate was taken up by this organism with a maximum rate of 0.53 pmol min(-)1 mg(-)1 of protein at 36 degrees C. The uptake was not affected by equimolar amounts of molybdate. The genes tupABC coding for an ABC transporter specific for tungstate were cloned in the downstream region of genes encoding a tungsten-containing formate dehydrogenase. The substrate-binding protein, TupA, of this putative transporter was overexpressed in Escherichia coli, and its binding properties toward oxyanions were determined by a native polyacrylamide gel retardation assay. Only tungstate induced a shift of TupA mobility, suggesting that only this anion was specifically bound by TupA. If molybdate and sulfate were added in high molar excess (>1000-fold), they were also slightly bound by TupA. The K(d) value for tungstate was determined to be 0.5 microm. The genes encoding the tungstate-specific ABC transporter exhibited highest similarities to putative transporters from Methanobacterium thermoautotrophicum, Haloferax volcanii, Vibrio cholerae, and Campylobacter jejuni. These five transporters represent a separate phylogenetic group of oxyanion ABC transporters as evident from analysis of the deduced amino acid sequences of the binding proteins. Downstream of the tupABC genes, the genes moeA, moeA-1, moaA, and a truncated moaC have been identified by sequence comparison of the deduced amino acid sequences. They should participate in the biosynthesis of the pterin cofactor that is present in molybdenum- and tungsten-containing enzymes except nitrogenase.  相似文献   

10.
The chlD gene in Escherichia coli is required for the incorporation and utilization of molybdenum when the cells are grown with low concentrations of molybdate. We constructed chlD-lac operon fusions and measured expression of the fusion, Mo cofactor, and nitrate reductase activities under a variety of growth conditions. The chlD-lac fusion was highly expressed when cells were grown with less than 10 nm molybdate. Increasing concentrations of molybdate caused loss of activity, with less than 5% of the activity remaining at 500 nM molybdate; when tungstate replaced molybdate, it had an identical affect on chlD expression. Expression of chlD-lac was increased in cells grown with nitrate. Strains with chlD-lac plus an additional mutation in a chl or nar gene were constructed to test whether the regulation of chlD-lac required the concerted action of gene products involved with Mo cofactor or nitrate reductase synthesis. Mutations in narL prevented the increase in activity in response to nitrate; mutations in chlB, narC, or narI resulted in partial constitutive expression of the chlD-lac fusion: the fusion was regulated by molybdate, but it no longer required the presence of nitrate for maximal activity. Mutations in chlA, chlE, or chlG which affect Mo cofactor metabolism, did not affect the expression of chlD-lac.  相似文献   

11.
DNA sequencing of the region upstream from the Azotobacter vinelandii operon (modEABC) that contains genes for the molybdenum transport system revealed an open reading frame (modG) encoding a hypothetical 14-kDa protein. It consists of a tandem repeat of an approximately 65-amino-acid sequence that is homologous to Mop, a 7-kDa molybdopterin-binding protein of Clostridium pasteurianum. The tandem repeat is similar to the C-terminal half of the product of modE. The effects of mutations in the mod genes provide evidence for distinct high- and low-affinity Mo transport systems and for the involvement of the products of modE and modG in the processing of molybdate. modA, modB, and modC, which encode the component proteins of the high-affinity Mo transporter, are required for 99Mo accumulation and for the nitrate reductase activity of cells growing in medium with less than 10 microM Mo. The exchange of accumulated 99Mo with nonradioactive Mo depends on the presence of modA, which encodes the periplasmic molybdate-binding protein. 99Mo also exchanges with tungstate but not with vanadate or sulfate. modA, modB, and modC mutants exhibit nitrate reductase activity and 99Mo accumulation only when grown in more than 10 microM Mo, indicating that A. vinelandii also has a low-affinity Mo uptake system. The low-affinity system is not expressed in a modE mutant that synthesizes the high-affinity Mo transporter constitutively or in a spontaneous tungstate-tolerant mutant. Like the wild type, modG mutants only show nitrate reductase activity when grown in > 10 nM Mo. However, a modE modG double mutant exhibits maximal nitrate reductase activity at a 100-fold lower Mo concentration. This indicates that the products of both genes affect the supply of Mo but are not essential for nitrate reductase cofactor synthesis. However, nitrogenase-dependent growth in the presence or absence of Mo is severely impaired in the double mutant, indicating that the products of modE and modG may be involved in the early steps of nitrogenase cofactor biosynthesis in A. vinelandii.  相似文献   

12.
Fibroblast cell lines, designated R- and W cells, were generated, respectively, from mouse embryos homozygous for a targeted disruption of the Igf1r gene, encoding the type 1 insulin-like growth factor receptor, and from their wild-type littermates. W cells grow normally in serum-free medium supplemented with various combinations of purified growth factors, while pre- and postcrisis R- cells cannot grow, as they are arrested before entering the S phase. R- cells are able to grow in 10% serum, albeit more slowly than W cells, and with all phases of the cell cycle being elongated. An activated Ha-ras expressed from a stably transfected plasmid is unable to overcome the inability of R- cells to grow in serum-free medium supplemented with purified clones. Nevertheless, even in the presence of serum, R- cells stably transfected with Ha-ras, alone or in combination with simian virus 40 large T antigen, fail to form colonies in soft agar. Reintroduction into R- cells (or their derivatives) of a plasmid expressing the human insulin-like growth factor I receptor RNA and protein restores their ability to grow with purified growth factors or in soft agar. The signaling pathways participating in cell growth and transformation are discussed on the basis of these results.  相似文献   

13.
Lemna perpusilla 6746, a short-day duckweed, flowered undercontinuous illumination if some of the SH inhibitors, such ascyanide or tungstate were added to the M-sucrose medium. Theeffect of tungstate was not overcome by simultaneous applicationof molybdate, but deletion of the Mo from the medium was enoughto induce the long-day flowering. In vivo assay of nitrate reductaseactivity suggested that nitrate reduction was not inhibitedby tungstate, CuSO4 or AgNO3 which induced longday flowering.The possibility was suggested that suppression of some Mo-requiringprocess other than nitrate reduction brings about the long-dayflowering in this plant. (Received November 12, 1975; )  相似文献   

14.
chlD gene function in molybdate activation of nitrate reductase.   总被引:24,自引:19,他引:5       下载免费PDF全文
chlD mutants of Escherichia coli lack active nitrate reductase but form normal levels of this enzyme when the medium is supplemented with 10-3 M molybdate. When chlD mutants were grown in unsupplemented medium and then incubated with molybdate in the presence of chloramphenicol, they formed about 5% the normal level of nitrate reductase. Some chlD mutants or the wild type grown in medium supplemented with tungstate accumulated an inactive protein which was electrophoretically identical to active nitrate reductase. Addition of molybdate to those cells in the presence of chloramphenicol resulted in the formation of fully induced levels of nitrate reductase. Two chlD mutants, including a deletion mutant, failed to accumulate the inactive protein and to form active enzyme under the same conditions. Insertion of 99-Mo into the enzyme protein paralleled activation; 185-W could not be demonstrated to be associated with the accumulated inactive protein. The rates of activation of nitrate reductase at varying molybdate concentrations indicated that the chlD gene product facilitates the activation of nitrate reductase at concentrations of molybdate found in normal growth media. At high concentrations, molybdate circumvented this function in chlD mutants and appeared to activate nitrate reductase by a mass action process. We conclude that the chlD gene plays two distinguishable roles in the formation of nitrate reductase in E. coli. It is involved in the accumulation of fully induced levels of the nitrate reductase protein in the cell membrane and it facilitates the insertion of molybdenum to form the active enzyme.  相似文献   

15.
When Escherichia coli was grown on medium containing 10 mM tungstate the formation of active formate dehydrogenase, nitrate reductase, and the complete formate-nitrate electron transport pathway was inhibited. Incubation of the tungstate-grown cells with 1 mM molybdate in the presence of chloramphenicol led to the rapid activation of both formate dehydrogenase and nitrate reductase, and, after a considerable lag, the complete electron transport pathway. Protein bands which corresponded to formate dehydrogenase and nitrate reductase were identified on polyacrylamide gels containing Triton X-100 after the activities were released from the membrane fraction and partially purified Cytochrome b1 was associated with the protein band corresponding to formate dehydrogenase but was not found elsewhere on the gels. When a similar fraction was prepared from cells grown on 10 mM tungstate, an inactive band corresponding to formate dehydrogenase was not observed on polyacrylamide gels; rather, a new faster migrating band was present. Cytochrome b1 was not associated with this band nor was it found anywhere else on the gels. This new band disappeared when the tungstate-grown cells were incubated with molybdate in the presence of chloramphenicol. The formate dehydrogenase activity which was formed, as well as a corresponding protein band, appeared at the original position on the gels. Cytochrome b1 was again associated with this band. The protein band which corresponded to nitrate reductase also was severely depressed in the tungstate-grown cells and a new faster migrating band appeared on the polyacrylamide gels. Upon activation of the nitrate reductase by incubation of the cells with molybdate, the new band diminished and protein reappeared at the original position. Most of the nitrate reductase activity which was formed appeared at the original position of nitrate reductase on gels although some was present at the position of the inactive band formed by tungstate-grown cells. Apparently, inactive forms of both formate dehydrogenase and nitrate reductase accumulate during growth on tungstate which are electrophoretically distinct from the active enzymes. Activation by molybdate results in molecular changes which include the reassociation of cytochrome b1 with formate dehydrogenase and restoration of both enzymes to their original electrophoretic mobilities.  相似文献   

16.
Abstract Growth of Bacillus sp. DSM 2923 on nicotinic acid in mineral medium was dependent on the concentration of sodium molybdate added. Addition of increasing amounts of tungstate to the medium resulted in an inhibition of growth on nicotinic acid or 6-hydroxynicotinic acid as sole source of carbon and energy. Chlorate-resistant mutants were isolated which were not able to degrade nicotinic acid and 6-hydroxynicotinic acid nor to reduce nitrate. Additionally, enzyme activities of nicotinic acid dehydrogenase and 6-hydroxynicotinic acid dehydrogenase increased with increasing concentrations of molybdate (10−8 to 10−6 M) added to the medium, and decreased with increasing amounts of tungstate (10−6 to 10−5 M) in the medium.  相似文献   

17.
In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector.  相似文献   

18.
molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB(2)C(2) (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 ? resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The ~100 μM binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.  相似文献   

19.
Molybdenum (Mo) is an essential micronutrient for almost all organisms. In eukaryotes, it forms a part of the molybdenum cofactor (Moco), which is required for numerous enzymes involved in carbon, nitrogen and sulfur metabolism. Mo is taken up by cells in the form of molybdate and recently molybdate transporters have been identified in Arabidopsis thaliana and Chlamydomonas reinhardtii. Here, we report the characterization of a novel mutant (DB6) of C. reinhardtii generated by random insertional mutagenesis that is unable to assimilate nitrate as a nitrogen source because it lacks functional nitrate reductase (NR). Besides lacking NR, DB6 also lacks xanthine dehydrogenase activity; a common requirement of both enzymes is Moco. DB6 displays a ‘molybdate‐repairable’ phenotype—growth on nitrate is partially restored by supplementing media with high levels of molybdate. This phenotype is typically associated with mutants defective in either molybdate transport or insertion of Mo into the pterin precursor of Moco. Mo content was found to be significantly lower in DB6 than in the wild‐type strain, AOXR1, which suggests that DB6 is defective in Mo uptake. Genetic complementation with a variety of candidate genes that include the known molybdate transporter MOT1 and DNA that spans the site of mutation was unable to recover the wild‐type phenotype. Taken together, our results indicate that DB6 is a novel molybdate transport‐deficient mutant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号