首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants of Pseudomonas aeruginosa deficient in the utilization of l-proline as the only carbon and nitrogen source have been found to be defective either in proline dehydrogenase activity or in both proline dehydrogenase and 1-pyrroline-5-carboxylate dehydrogenase activities of the bifunctional proline degradative enzyme. The latter type of mutants was unable to utilize l-ornithine, indicating that a single 1-pyrroline-5-carboxylate dehydrogenase activity is involved in the degradation of ornithine and proline. Proline dehydrogenase and 1-pyrroline-5-carboxylate dehydrogenase activities were strongly and coordinately induced by proline. It was excluded that 1-pyrroline-5-carboxylate acted as an inducer of the bifunctional enzyme and it was shown that the low level induction observed during growth on ornithine was due to the intracellular formation of proline. The formation of the proline degradative enzyme was shown to be subject to catabolite repression by citrate and nitrogen control.Abbreviations EMS Ethylmethane sulfonate - NG N-methyl-N-nitro-N-nitrosoguanidine - P Minimal medium P - Pro-DH Proline dehydro-genase - P5C 1-Pyrroline-5-carboxylate - P5C-DH 1-Pyrroline-5-carboxylate dehydrogenase  相似文献   

2.
3.
4.
Summary Mutants of Pseudomonas aeruginosa PAO deficient in their utilization of DL-valine have been found to have lost their capacity to utilize DL-alanine and L-proline. Use of conjugal and transductional mediated gene transfers have established the chromosomal location of this gene and also its pleotropic function in the induction of the D-amino acid oxidase, involved in the oxidative utilization of DL-valine, DL-alanine and L-proline. These point mutations are clustered in a single locus designated as Val D and mapped around the 19th minute on the chromosome.  相似文献   

5.
I R Patel  K K Rao 《Microbios》1985,42(167):7-16
A bacteriophage of Pseudomonas aeruginosa PAO1 was characterized. Bacteriophage PIK was found to adsorb on the cell wall of the host organism. Electron microscopy of the phage PIK revealed that it had a bipyramidal hexagonal prismatic head of 110 nm in diameter, a tail which was 158 nm long and a tail plate of 47 nm width. This paper describes its basic characters, and a quantitative study was made of its adsorption to exponential phase cells of two different strains of P. aeruginosa. PIK was found to contain double stranded DNA and it appears to be virulent towards its host, P. aeruginosa PAO1. It was classified into the group of phages possessing a contractile tail.  相似文献   

6.
7.
By the isolation of mutants that were unable to grow on L-hydroxyproline or DL-valine, it has been possible to demonstrate the presence of two different types of D-amino acid oxidase activities inPseudomonas aeruginosa PAO. One was the D-amino acid dehydrogenase, probably involved in the oxidation of a number of D-amino acids such as D-alanine, D-phenylalanine and D-valine. The other was the inducible oxidase, specific to the oxidation of allohydroxy-D-proline formed from L-hydroxyproline during its oxidation. Thus, it has been possible to delink the involvement of the general D-amino acid dehydrogenase in the oxidative breakdown of allohydroxy-Dsproline.  相似文献   

8.
9.
Yang Z  Lu CD 《Journal of bacteriology》2007,189(11):3954-3959
The arginine transaminase (ATA) pathway represents one of the multiple pathways for L-arginine catabolism in Pseudomonas aeruginosa. The AruH protein was proposed to catalyze the first step in the ATA pathway, converting the substrates L-arginine and pyruvate into 2-ketoarginine and L-alanine. Here we report the initial biochemical characterization of this enzyme. The aruH gene was overexpressed in Escherichia coli, and its product was purified to homogeneity. High-performance liquid chromatography and mass spectrometry (MS) analyses were employed to detect the presence of the transamination products 2-ketoarginine and L-alanine, thus demonstrating the proposed biochemical reaction catalyzed by AruH. The enzymatic properties and kinetic parameters of dimeric recombinant AruH were determined by a coupled reaction with NAD(+) and L-alanine dehydrogenase. The optimal activity of AruH was found at pH 9.0, and it has a novel substrate specificity with an order of preference of Arg > Lys > Met > Leu > Orn > Gln. With L-arginine and pyruvate as the substrates, Lineweaver-Burk plots of the data revealed a series of parallel lines characteristic of a ping-pong kinetic mechanism with calculated V(max) and k(cat) values of 54.6 +/- 2.5 micrromol/min/mg and 38.6 +/- 1.8 s(-1). The apparent K(m) and catalytic efficiency (k(cat)/K(m)) were 1.6 +/- 0.1 mM and 24.1 mM(-1) s(-1) for pyruvate and 13.9 +/- 0.8 mM and 2.8 mM(-1) s(-1) for l-arginine. When L-lysine was used as the substrate, MS analysis suggested Delta(1)-piperideine-2-carboxylate as its transamination product. These results implied that AruH may have a broader physiological function in amino acid catabolism.  相似文献   

10.
11.
Two extracellular autolysins have been detected in the spent culture supernatants of Pseudomonas aeruginosa PAO1 by using renaturing polyacrylamide gel electrophoresis. The two autolysins were isolated from the culture supernatant by trichloroacetic acid precipitation and were shown to have apparent molecular masses of 26 and 29 kDa. The 26-kDa autolysin first appears during the early exponential phase of growth and then declines sharply, while the 29-kDa autolysin first appears in the late exponential phase of growth and continues well into the stationary phase. Fractionation of whole cells indicated that the 26-kDa enzyme was also localized within the periplasm, with a lesser amount of activity associated with the cytoplasmic membrane. The 29-kDa autolytic activity was distributed within the cell equally between the periplasm and the cytoplasmic membrane. The pH optima of the isolated 26- and 29-kDa autolysins are 6.0 and 5.0, respectively. Further evidence from both protease susceptibility and inhibition studies confirms that these two extracellular autolysins isolated from P. aeruginosa PAO1 are separate and distinct.  相似文献   

12.
Mutations causing deficiencies in the inducible, membrane-associated sn-glycerol-3-phosphate dehydrogenase (glpD) and in inducible glucose transport (glcT) were mapped on the Pseudomonas aeruginosa PAO1 chromosome by using the generalized transducing phages F116L and G101. These mutations, in separate catabolic regulatory units, were cotransducible with a previously described cluster of carbohydrate catabolic gene loci (zwf-1 eda-9001 edd-1) that maps at ca. 50 to 53 min on the chromosome. Mutant strain PFB362 (glcT1) did not transport glucose and did not produce a functional, periplasmic, glucose-binding protein that is required for glucose transport. This mutation was cotransducible with zwf-1 (70%), nalA (29%), and phe-2 (19%) but not with glpD1 or leu-10. The glpD1 mutation in strain PRP408 was cotransducible with zwf-1 (5%), eda-9001 (4%), and edd-1 (1%) and also with ami-151 (17%) and phe-2 (33%). These results expand the number of known carbohydrate catabolism genes that are clustered in the 50- to 55-min region of the PAO1 chromosome and allow us to propose the following relative gene order: ami-151 glpD1 phe-2 nalA zwf-1 eda-9001 edd-1 glcT1 leu-10. Three independently obtained nal determinants for high-level resistance to nalidixic acid, which were employed in these studies, exhibited similar cotransduction frequencies with several flanking marker mutations.  相似文献   

13.
S M Park  C D Lu    A T Abdelal 《Journal of bacteriology》1997,179(17):5300-5308
Gel retardation experiments indicated the presence in Pseudomonas aeruginosa cell extracts of an arginine-inducible DNA-binding protein that interacts with the control regions for the car and argF operons, encoding carbamoylphosphate synthetase and anabolic ornithine carbamoyltransferase, respectively. Both enzymes are required for arginine biosynthesis. The use of a combination of transposon mutagenesis and arginine hydroxamate selection led to the isolation of a regulatory mutant that was impaired in the formation of the DNA-binding protein and in which the expression of an argF::lacZ fusion was not controlled by arginine. Experiments with various subclones led to the conclusion that the insertion affected the expression of an arginine regulatory gene, argR, that encodes a polypeptide with significant homology to the AraC/XylS family of regulatory proteins. Determination of the nucleotide sequence of the flanking regions showed that argR is the sixth and terminal gene of an operon for transport of arginine. The argR gene was inactivated by gene replacement, using a gentamicin cassette. Inactivation of argR abolished arginine control of the biosynthetic enzymes encoded by the car and argF operons. Furthermore, argR inactivation abolished the induction of several enzymes of the arginine succinyltransferase pathway, which is considered the major route for arginine catabolism under aerobic conditions. Consistent with this finding and unlike the parent strain, the argR::Gm derivative was unable to utilize arginine or ornithine as the sole carbon source. The combined data indicate a major role for ArgR in the control of arginine biosynthesis and aerobic catabolism.  相似文献   

14.
构建铜绿假单胞菌lasI,rhlI基因功能缺陷株,为进一步阐明氦氧饱和高气压暴露条件诱导lasI,rhlI基因介导铜绿假单胞菌毒力调节的分子机制研究奠定基础。用双亲株接合转移法删除lasI,rhlI基因ORF编码区,通过RT-PCR方法验证目标基因编码序列mRNA的缺失;通过对细菌生长增殖能力、弹性蛋白酶代谢活性和细菌绿脓菌素分泌能力等表型的测定,验证目标基因编码序列缺失后的基因调节功能的缺陷。结果表明成功构建铜绿假单胞菌lasI,rhlI基因功能缺陷株,可作为进一步研究的基因工程菌。  相似文献   

15.
Pseudomonas aeruginosa PAO1 is repelled by trichloroethylene (TCE), and the methyl-accepting chemotaxis proteins PctA, PctB, and PctC serve as the major chemoreceptors for negative chemotaxis to TCE. In this study, we found that the pctABC triple mutant of P. aeruginosa PAO1 was attracted by TCE. Chemotaxis assays of a set of mutants containing deletions in 26 potential mcp genes revealed that mcpA (PA0180) is the chemoreceptor for positive chemotaxis to TCE. McpA also detects tetrachloroethylene and dichloroethylene isomers as attractants.  相似文献   

16.
The fluorescent dihydroxyquinoline chromophore of the pyoverdine siderophore in Pseudomonas is a condensation product of D-tyrosine and l-2,4-diaminobutyrate. Both pvdH and asd (encoding aspartate beta-semialdehyde dehydrogenase) knockout mutants of Pseudomonas aeruginosa PAO1 were unable to synthesize pyoverdine under iron-limiting conditions in the absence of l-2,4-diaminobutyrate in the culture media. The pvdH gene was subcloned, and the gene product was hyperexpressed and purified from P. aeruginosa PAO1. PvdH was found to catalyze an aminotransferase reaction, interconverting aspartate beta-semialdehyde and l-2,4-diaminobutyrate. Steady-state kinetic analysis with a novel coupled assay established that the enzyme adopts a ping-pong kinetic mechanism and has the highest specificity for alpha-ketoglutarate. The specificity of the enzyme toward the smaller keto acid pyruvate is 41-fold lower. The enzyme has negligible activity toward other keto acids tested. Homologues of PvdH were present in the genomes of other Pseudomonas spp. These homologues were found in the DNA loci of the corresponding genomes that contain other pyoverdine synthesis genes. This suggests that there is a general mechanism of l-2,4-diaminobutyrate synthesis in Pseudomonas strains that produce the pyoverdine siderophore.  相似文献   

17.
18.
Receptor for phage PIK specific for Pseudomonas aeruginosa strain PAO1 was studied. Phage PIK was strongly inactivated by lipopolysaccharide (LPS) in vitro, exhibiting a PhI50 of 4.8 micrograms/ml. Further it was noted that this inactivation by LPS was reduced to 50% by several mono- and disaccharides when tested in vitro. D-glucosamine, D-mannose and L-rhamnose were found to be most effective at the concentration of 0.045 M, 0.25 M and 0.35 M respectively. This suggests the possibility that phage PIK receptor in LPS contains D-mannose, L-rhamnose and D-glucosamine. Either one of the former two could be located at a terminal position alpha-linked to the adjacent residue or located internally in the polysaccharide chain linked through its C-4 position. A theoretical approach to the interpretation of phage cell interaction was also investigated.  相似文献   

19.
Anaerobic growth of Pseudomonas aeruginosa PAO1 was affected by quorum sensing. Deletion of genes that produce N-acyl-l-homoserine lactone signals resulted in an increase in denitrification activity, which was repressed by exogenous signal molecules. The effect of the las quorum-sensing system was dependent on the rhl quorum-sensing system in regulating denitrification.  相似文献   

20.
Mutant hunts using comprehensive sequence-defined libraries make it possible to identify virtually all of the nonessential functions required for different bacterial processes. However, the success of such screening depends on the accuracy of mutant identification in the mutant library used. To provide a high-quality library for Pseudomonas aeruginosa PAO1, we created a sequence-verified collection of 9,437 transposon mutants that provides genome coverage and includes two mutants for most genes. Mutants were cherry-picked from a larger library, colony-purified, and resequenced both individually using Sanger sequencing and in a pool using Tn-seq. About 8% of the insertion assignments were corrected, and in the final library nearly 93% of the transposon locations were confirmed by at least one of the resequencing procedures. The extensive sequence verification and inclusion of more than one mutant for most genes should help minimize missed or erroneous genotype-phenotype assignments in studies using the new library.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号