首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Vasoactive intestinal peptide (VIP) has potent antiproliferative and anti-inflammatory functions in the immune system. Two structurally distinct G-protein-associated receptors, VIP receptor type 1 (VPAC1) and VIP receptor type 2 (VPAC2), mediate the biological effects of VIP. The regulation of VIP receptor gene expression and the distribution of these receptors in different compartments of the human immune systems are unknown. This study reports, for the first time, a quantitative analysis of VPAC1 and VPAC2 mRNA expression in resting and activated T cells as well as in resting monocytes. Purified human peripheral blood CD4(+) T cells and CD8(+) T cells were stimulated via the TCR/CD3 receptor complex. Using the novel fluorometric-based kinetic (real-time) RT-PCR, we determined that VPAC1 is constitutively expressed in resting T cells and monocytes; the levels of expression were significantly higher in monocytes and CD4(+) T cells than in CD8(+) T cells. VPAC1 mRNA expression is significantly higher relative to VPAC2 in resting CD4(+) T cells and CD8(+) T cells. VPAC2 is expressed at very low levels in resting T cells but is not detectable in resting monocytes. In vitro stimulation of Th cells with soluble anti-CD3 plus PMA induced a T cell activation-dependent down-regulation of VPAC1. VPAC1 is down-regulated under conditions of optimal T cell stimulation. Our results suggest that selective VIP effects on T cell function may be mediated via selective expression of VPAC1 and VPAC2 on T cells and monocytes. Furthermore, down-regulation of VPAC1 in CD4(+) T cell subpopulations is highly correlated with T cell activation.  相似文献   

2.
3.
4.
Immune cellular effects of vasoactive intestinal peptide (VIP) are transduced by VIP G protein-coupled receptors type 1 (VPAC1) and type 2 (VPAC2). We now show that VIP with TGFbeta stimulates the transformation of CD4 T cells to a distinctive type of Th17 cell that generates IL-17 but not IL-6 or IL-21. VIP induction of Th17 cells was higher in VPAC2 knockout mice than wild-type mice, suggesting that VPAC1 is the principal transducer. Compared with Th17 cells elicited by IL-6, those evoked by VIP were similar in the secretion of IL-17 and IL-22, but lacked IL-21 secretion. Suppression of VIP induction of Th17 cells by protein kinase A inhibitors and enhancement by pharmacologically increased cAMP supports a role for this signal. The ability of VIP-VPAC1 axis signals to evoke development of a novel type of Th17 cells demonstrates the unique specificity of neuroregulatory mechanisms in the immunological environment.  相似文献   

5.
Previous studies have shown that vasoactive intestinal peptide (VIP) and its receptors (VPAC(1) and VPAC(2) receptors) are involved in promotion and growth of many human tumours including breast cancer. Here we investigated whether VIP regulates the expression of the main angiogenic factor, vascular endothelial cell growth factor (VEGF) in human oestrogen-dependent (T47D) and oestrogen-independent (MDA-MB-4687) breast cancer cells. Semiquantitative and quantitative real-time RT-PCRs were used at mRNA level whereas enzyme immunoanalysis was performed at protein level. Both cancer cell lines expressed VIP and VPAC(1) (but not VPAC(2)) receptors that were functional as shown by VIP stimulation of adenylate cyclase activity. VIP induced VEGF expression at both mRNA and protein levels following a time-dependent pattern. The responses were faster in T47D than in MDA-MB-468 cells. The observed VIP regulation of VEGF expression appears to be modulated at least by the cAMP/protein kinase A (PKA) and the phosphoinositide 3-kinase (PI3-K) signalling systems as shown by studies of adenylate cyclase stimulation and using specific kinase inhibitors such as H89 and wortmannin. These actions suggest a proangiogenic potential of VIP in breast cancer.  相似文献   

6.
The vasoactive intestinal peptide (VIP) and its G protein-coupled receptors VPAC1 and VPAC2 prominently mediate diverse physiological functions in the neural, endocrine, and immune systems. A deletion variant of mouse VPAC2 has been identified in immune cells that lacks amino acids 367-380 at the carboxyl-terminal end of the seventh transmembrane domain. When expressed at equivalent levels in a human Jurkat T cell line, which has very low endogenous expression of human VPAC1 and VPAC2, wild-type and deletion-variant VPAC2 bound the same amount of 125I-VIP with similar affinity. Unlike wild-type VPAC2, however, deletion-variant VPAC2 did not transduce VIP-elicited increases in intracellular concentration of cyclic AMP, chemotaxis, or suppression of generation of interleukin-2. Natural deletion of part of the last transmembrane domain of VPAC2 thus abrogates signaling functions without apparent alterations of expression or ligand binding.  相似文献   

7.
An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.  相似文献   

8.
9.
The stimulatory effect of vasoactive intestinal peptide (VIP) and analogues on [Ca2+]i has been investigated in chinese hamster ovary (CHO) cells stably transfected with the reporter gene aequorin, and expressing either the human VPAC1or VPAC2 receptor in absence or in presence of the Galpha16. In cells that were not transfected with Galpha16 and expressed a similar density of receptors, the VIP induced [Ca2+]i ncrease was higher in VPAC1 than in VPAC2 receptor expressing cells. In aequorin/Galpha16 cotransfected cells, the VIP-induced response was higher, reaching 70 to 80% of the maximal calcium response, obtained after digitonin treatment, in response to both VPAC1 and VPAC2 receptor stimulation.The results suggest that in hematopoietic cells, which express both VIP receptors and Galpha16, the signalling pathway of VIP could be mediated through both cyclic AMP and [Ca2+]i increase.  相似文献   

10.
The effects vasoactive intestinal peptide (VIP) antagonists were investigated on pancreatic cancer cell lines. (N-Stearyl, Norleucine17) VIP hybrid ((SN)VIPhyb) inhibited 125I-VIP binding to human Capan-2 cells with an IC50 value of 0.01 microM whereas VIP hybrid had an IC50 value of 0.2 microM. By RT-PCR and Northern blot, VPAC1 receptor mRNA was detected in CAPAN-2 cells. One microM (SN)VIPhyb and 10 microM VIPhyb inhibited the ability of 30 nM VIP to elevate cyclic AMP and increase c-fos mRNA. (SN)VIPhyb, 1 microM inhibited the clonal growth of CAPAN-2 cells in vitro. In vivo, (SN)VIPhyb (10 microg/day s.c.) inhibited CAPAN-2 xenograft growth in nude mice. These results indicate that (SN)VIPhyb is a pancreatic cancer VPAC receptor antagonist.  相似文献   

11.
12.
Vasoactive intestinal peptide (VIP) and its two G protein-coupled receptors, VPAC1R and VPAC2R, are prominent in the immune system and potently affect T cells and macrophages. VPAC1Rs are expressed constitutively by blood and tissue T cells, with an order of prevalence of Th2>Th1>Ts, and transmit signals suppressive for migration, proliferation and cytokine production. Immune activation of T cells downregulates VPAC1Rs and upregulates VPAC2Rs. VPAC2Rs mediate T cell chemotaxis, stimulation of some Th2-type cytokines, and inhibition of some Th1-type cytokines. A tentative hypothesis that the VIP-VPAC2R axis is the major neuroregulator of Th2/Th1 balance has been confirmed by finding an increased ratio in CD4 T cells of transgenic (TG) mice, expressing high levels of VPAC2Rs, and a decreased ratio in CD4 T cells of VPAC2R-null (K/O) mice. VPAC2R TG mice exhibit an allergic phenotype, whereas the K/O mice are hypoallergic and have heightened delayed-type hypersensitivity. The mechanisms of VIP-VPAC2R effects include decreased Th2 apoptosis, increased Th2-type cytokine production, and greater generation of Th2 memory cells. VPAC2R antagonists are being developed to alleviate allergic diseases and strengthen effector Th1 cell-mediated immunoprotection.  相似文献   

13.
We have characterized vasoactive intestinal peptide (VIP) receptor/G-protein coupling in rat alveolar macrophage (AM) membranes and find that pertussis toxin treatment and antisera against G(alphai3) and G(alphas) reduce high-affinity (125)I-VIP binding, indicating that both G(alphas) and G(alphai3) couple to the VIP-receptor. The predominant VIP-receptor subtype in AM is VPAC(1) and we examined the G-protein interactions of the human VPAC(1) that had been transfected into HEK293 cells. VPAC(1) has a molecular mass of 56 kDa; GTP analogs reduced (125)I-VIP binding to this protein demonstrating that high-affinity binding of VIP to the receptor requires coupling to G-protein. Functional VIP/VPAC(1)/G-protein complexes were captured by covalent cross-linking and analyzed by Western blotting. The transfected human VPAC(1) receptor in HEK293 was found to be coupled to G(alphas) but not G(alphai) or G(alphaq). Furthermore, pertussis toxin treatment had no effect on VPAC(1)/G-protein coupling in these cells. These observations suggest that the G-proteins activated by VPAC(1) may be dependent upon species and cell type.  相似文献   

14.
The expressions of mRNAs for pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), and their receptors (PAC1, VPAC1 and VPAC2) were examined in the five steps of the in vitro neuronal culture model of embryonic stem (ES) cell differentiation. mRNAs for PACAP, VIP, PAC1 receptor, and VPAC2 receptor were moderately expressed in neural stem cell-enriched cultures, while VPAC1 receptor mRNA was most prominently expressed in embryoid bodies (EBs). The expression of PAC1 receptor mRNA was further upregulated after terminal differentiation into neurons. In contrast, the expressions of PAC1 receptor and PACAP mRNAs were markedly decreased after glial differentiation. These results suggest that this in vitro neuronal culture system will be a useful model for future studies on the functional role of the PACAPergic system during different stages of neuronal development.  相似文献   

15.
PURPOSE: Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the secretin/glucagon/vasoactive intestinal peptide family, induces the expression of catecholamine-synthesizing enzymes in adrenal medullary cells. In addition, PACAP and its receptor have been detected in human neuroblastoma tissues and cell lines, though it is not yet known whether PACAP enhances the expression of genes encoding catecholamine-synthesizing enzymes. To address this question, we analyzed PACAP, PACAP receptor and tyrosine hydroxylase (TH) mRNAs in neuroblastomas. METHODS: The levels of mRNA for PACAP and vasoactive intestinal peptide (VIP), as well as their receptors and the mRNA for TH were measured by RT-PCR or real-time PCR analysis. RESULTS: VPAC1R mRNA was detected in all of 16 tissues and 3 cell lines that were examined, while VPAC2R mRNA was detected in 5 of 16 (31%) tissue and 2 of 3 cell lines. PAC1R mRNA was detected in 6 out of 16 (38%) tissues and none of 3 cell lines. mRNA expression of PACAP and TH were detected in many tissues (10/16 and 16/16, respectively). However, neither in tissues nor cell lines did PACAP mRNA expression correlate with TH mRNA expression. CONCLUSION: Our findings suggest that PACAP is not involved in the regulation of expression of TH in neuroblastomas.  相似文献   

16.
The specific binding of vasoactive intestinal peptide (VIP) to murine lymphocytes was investigated. CD4 T cells from mesenteric lymph nodes (MLN) bound more 125I-VIP than did unseparated MLN lymphocytes at 37 degrees C, but not at 4 degrees C. The differences between the amount of 125I-VIP bound by the CD4 T cells and unseparated MLN lymphocytes at 37 degrees C depended upon a difference in the amount of the ligand that was internalized by the cells. The rate of insertion of unoccupied VIP receptors from the cytoplasm into the cell membrane (370 receptors/cell/min), the rate constants for internalization of ligand occupied VIP receptors (0.55 min-1) and unoccupied VIP receptors (0.11 min-1), and the rate constant for the elimination of internalized VIP (0.07 min-1) by CD4 T cells were evaluated. These results provide new understanding of the behaviour of VIP receptors on lymphocytes and indicate a mechanism by which CD4 T lymphocytes can homologously regulate their surface expression of VIP receptors in the presence of ambient VIP.  相似文献   

17.
Neuropeptides exert a variety of putative immunomodulatory actions. Despite the molecular cloning of multiple forms of receptors for several neuropeptides with putative immunomodulatory effects, including vasoactive intestinal peptide (VIP), the related peptide pituitary adenylate cyclase-activating peptide (PACAP), the opiate peptides, tachykinins, somatostatin and corticotropin-releasing factor, it has not been reported that any of the receptor genes are expressed at significant levels in cells of the immune system. The low level of expression of these receptors and lack of knowledge concerning receptor subtype has impeded progress in understanding how neuropeptides regulate immune function. For example, it is not understood why VIP produces immunomodulatory effects at concentrations far below its receptor-binding affinity. Receptors for VIP and PACAP have recently been cloned. We show here by Northern blot analysis that the VIP/PACAP1 receptor mRNA is present in total RNA prepared from mouse spleen B- and T-lymphocytes. The VIP/PACAP1 receptor mRNA was also present in human peripheral blood lymphocytes, and in a B-lymphocyte and a myelocytic cell line. The mRNA for a second form of the receptor, the VIP/PACAP2 receptor, was not expressed at detectable levels in normal cells, but was detected in several human T-cell lines and a murine mast cell line. The results indicate that VIP/PACAP1 and perhaps VIP/PACAP2 receptors mediate the diverse effects of VIP and PACAP on immune cells.  相似文献   

18.
Specific, high affinity receptors for vasoactive intestinal peptide (VIP) have been identified on a human pre-B cell line, Nalm 6, and on a human plasma cell line, Dakiki. The single class of high affinity sites exhibited a KD of 12.6 +/- 2.9 nM for VIP in Nalm 6 cells and 9.1 +/- 2.7 nM in Dakiki plasma cells. The homologous peptides, peptide histidine methionine (PHM), growth hormone releasing factor (GHRF), and secretin were all less effective than VIP in competitively inhibiting binding of 125I-VIP to Nalm 6 and Dakiki plasma membranes. The putative receptor was characterized as a 47-kDa protein using covalent cross-linking techniques and VIP stimulated adenylate cyclase in pre-B cells. Human lymphocytes of B cell lineage thus appear to express functional VIP receptors homologous to the receptor identified in T lymphoblasts, brain, pituitary, and intestine.  相似文献   

19.
Plasmacytoid dendritic cells (PDC) are considered the main sentinels against viral infections and play a major role in immune tolerance. Vasoactive intestinal peptide (VIP) is a potent immunomodulator, whose role in PDC function is unknown. The present study was designed to investigate whether human PDC express VIP receptors and whether VIP has immunological effects on PDC. Using real-time RT-PCR and immunofluorescence, we demonstrated that VIP receptors VPAC1 and VPAC2 are expressed on PDC. After culturing PDC with VIP and CpG oligodeoxynucleotides for 48 h, expression of surface molecules with significance for PDC-T cell interactions as well as IFN-alpha secretion were quantified using FACS analysis and ELISA, respectively. For functional assays, CFSE-stained CD4+ T cells were coincubated with differentially treated PDC. T cell proliferation and production of various cytokines were determined by FACS analysis and ELISA. VIP enhanced PDC expression of CD86, MHC II, and CCR7. In contrast, VIP inhibited PDC secretion of IFN-alpha and expression of Neuropilin-1 and MHC I. The potential of CpG oligodeoxynucleotide-activated PDC to induce proliferation of allogeneic CD4(+) T cells was impaired when VIP was present during activation. Furthermore, pretreatment of PDC with VIP resulted in a decrease of the IFN-gamma:IL-4 ratio in cocultured T cells, suggesting a modulation of the immune response toward Th2. Taken together, these results strongly suggest that VIP regulates the immunological function of human PDC. VIP may thus be involved in the modulation of immune responses to viral infections as well as in the maintenance of immune tolerance.  相似文献   

20.
The human VPAC1 receptor for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP) belongs to the class II family of G protein coupled receptors with seven transmembrane segments. It recognizes several VIP-related peptides and displays a very low affinity for secretin despite >70% homology between VIP and secretin. Conversely, the human secretin receptor has high affinity for secretin but low affinity for VIP. We took advantage of this reversed selectivity to identify a domain of the VPAC1 receptor responsible for selectivity toward secretin by constructing human VPAC1-secretin receptor chimeras. A first set of chimeras consisted of exchanging the entire N-terminal ectodomain or large parts of this domain. They were constructed by overlap PCR, transfected in COS-7 cells, and their ligand selectivity, expressed as the ratio of EC(50) for secretin/EC(50) for VIP (referred to as S/V), in stimulating cAMP production was measured. Two very informative chimeras respectively referred to as S144V and S123V were obtained by replacing the entire ectodomain or only the first 123 amino acids of the VPAC1 receptor by the corresponding sequences of the secretin receptor. Whereas S144V no longer discriminated between VIP and secretin (S/V = 1.2), S123V discriminated between the two peptides (S/V = 300) in the same manner as the wild-type VPAC1 receptor. The motif responsible for discrimination was determined by introducing small blocks or individual amino acids of secretin receptor in the 123-144 sequence of the S123V chimera. The data obtained from 14 new chimeras sustained that two nonadjacent pairs of amino acids, Gln(135) Thr(136) and Gly(140) Ser(141) in the C-terminal end of the N-terminal VPAC1 receptor ectodomain constitute a selective filter that strongly restricts access of secretin to the VPAC1 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号