首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ozone is so reactive that it can be predicted to be entirely consumed as it passes through the first layer of tissue it contacts at the lung/air interface. This layer includes the lung lining fluid (tracheobronchial surface fluid and alveolar and small airway lining fluid) and, where the lung lining fluid is thin or absent, the membranes of the epithelial cells that line the airways. Therefore, the biochemical changes that follow the inhalation of ozone must be relayed into deeper tissue strata by a cascade of ozonation products. Lipid ozonation products (LOP) are suggested to be the most likely species to act as signal transduction molecules. This is because unsaturated fatty acids are present in the lipids in both the lung lining fluid and in pulmonary cell bilayers, and ozone reacts with unsaturated fatty acids to produce ozone-specific products. Further, lipid ozonation products are finite in number, have structures that are predictable from the Criegee ozonation mechanism, and are small, diffusible, stable (or metastable) molecules. Preliminary data show that individual LOP cause the activation of specific lipases, which trigger the release of endogenous mediators of inflammation.  相似文献   

2.
Lung epithelium guarantees gas-exchange (performed in the alveoli) and protects from external insults (pathogens, pollutants…) present within inhaled air. Both functions are facilitated by secretions lining airway surface liquid, mucus (in the upper airways) and pulmonary surfactant (in the alveoli). Mucins, the main glycoproteins present within the mucus, are responsible for its rheologic properties and participate in lung defense mechanisms. In parallel, lung collectins are pattern recognition molecules present in pulmonary surfactant that also modulate lung defense. During chronic airways diseases, excessive protease activity can promote mucus hypersecretion and degradation of lung collectins and therefore contribute to the pathophysiology of these diseases. Importantly, secretion of local and systemic anti-proteases might be crucial to equilibrate the protease/anti-protease unbalance and therefore preserve the function of lung host defense compounds and airway surface liquid homeostasis. In this review we will present information relative to proteases able to modulate mucin production and lung collectin integrity, two important compounds of innate immune defense. One strategy to preserve physiological mucus production and collectin integrity during chronic airways diseases might be the over-expression of local ‘alarm’ anti-proteases such as SLPI and elafin. Interestingly, a cross-talk between lung collectins and anti-protease activity has recently been described, implicating the presence within the lung of a complex network between proteases, anti-proteases and pattern recognition molecules, which aims to keep or restore homeostasis in resting or inflamed lungs.  相似文献   

3.
The amiloride-sensitive epithelial Na(+) channel (ENaC) is an apical membrane protein complex involved in active Na(+) absorption and in control of fluid composition in airways. There are no data reporting the distribution of its pore-forming alpha-, beta-, and gamma-subunits in the developing human lung. With use of two different rabbit polyclonal antisera raised against beta- and gamma-ENaC, immunohistochemical localization of the channel was performed in fetal (10-35 wk) and in adult human airways. Both subunits were detected after 17 wk of gestation on the apical domain of bronchial ciliated cells, in glandular ducts, and in bronchiolar ciliated and Clara cells. After 30 wk, the distribution of beta- and gamma-subunits was similar in fetal and adult airways. In large airways, the two subunits were detected in ciliated cells, in cells lining glandular ducts, and in the serous gland cells. In the distal bronchioles, beta- and gamma-subunits were identified in ciliated and Clara cells. Ultrastructural immunogold labeling confirmed the identification of beta- and gamma-ENaC proteins in submucosal serous cells and bronchiolar Clara cells. Early expression of ENaC proteins in human fetal airways suggests that Na(+) absorption might begin significantly before birth, even if secretion is still dominant.  相似文献   

4.
5.
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (~250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ~70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.  相似文献   

6.
The lung is composed of a series of branching conducting airways that terminate in grape-like clusters of delicate gas-exchanging airspaces called pulmonary alveoli. Maintenance of alveolar patency at end expiration requires pulmonary surfactant, a mixture of phospholipids and proteins that coats the epithelial surface and reduces surface tension. The surfactant lining is exposed to the highest ambient oxygen tension of any internal interface and encounters a variety of oxidizing toxicants including ozone and trace metals contained within the 10 kl of air that is respired daily. The pathophysiological consequences of surfactant oxidation in humans and experimental animals include airspace collapse, reduced lung compliance, and impaired gas exchange. We now report that the hydrophilic surfactant proteins A (SP-A) and D (SP-D) directly protect surfactant phospholipids and macrophages from oxidative damage. Both proteins block accumulation of thiobarbituric acid-reactive substances and conjugated dienes during copper-induced oxidation of surfactant lipids or low density lipoprotein particles by a mechanism that does not involve metal chelation or oxidative modification of the proteins. Low density lipoprotein oxidation is instantaneously arrested upon SP-A or SP-D addition, suggesting direct interference with free radical formation or propagation. The antioxidant activity of SP-A maps to the carboxyl-terminal domain of the protein, which, like SP-D, contains a C-type lectin carbohydrate recognition domain. These results indicate that SP-A and SP-D, which are ubiquitous among air breathing organisms, could contribute to the protection of the lung from oxidative stresses due to atmospheric or supplemental oxygen, air pollutants, and lung inflammation.  相似文献   

7.
CTP:phosphocholine cytidylyltransferase (CCT) is a rate-determining enzyme in de novo synthesis of phosphatidylcholine (PC). The lung requires a steady synthesis of PC for lung surfactant of which disaturated PC is the essential active agent. Surfactant synthesis occurs in alveolar type II cells. Studies with non-pulmonary cells have suggested that CCT is both a nuclear and cytoplasmic protein. The unusual requirements of the lung for PC synthesis and, therefore, CCT activity suggest a unique mechanism of regulation and possibly localization of CCT. The localization of CCT alpha in lung epithelial cells and, of greater consequence, lung tissues are yet unknown. Three isoforms of CCT have been identified. Herein we investigated the localization of the ubiquitously expressed CCT alpha isoform. To ascertain CCT alpha localization in lungs and lung-related epithelial cells, we employed a number of localization methods. Immunogold electron microscopy using polyclonal antibodies raised to either the carboxyl terminus, catalytic domain, or amino terminus of CCT alpha localized CCT alpha mostly to the exterior plasma membrane or regions of the endoplasmic reticulum (ER) in both A549 and MLE-15 epithelial lung cell lines and primary cultures of fetal rat lung epithelial cells. In contrast to other studies, little or no nuclear labeling was observed. Indirect immunofluorescence of these cells with anti-CCT alpha antibodies resulted in a similar distribution. Indirect visualization of both hemagglutinin- and FLAG-tagged CCT alpha as well as direct visualization of enhanced green fluorescence protein-CCT alpha fusion protein corroborated a cytoplasmic localization of CCT alpha in pulmonary cells. Moreover, analysis of lung tissue from fetal and adult mouse by either immunogold electron microscopy or indirect immunofluorescence yielded a strong cytoplasmic CCT alpha signal with virtually no nuclear localization in epithelial cells lining the airways. The cytoplasmic localization of CCT alpha in type II cells was further substantiated with transgenic mice overexpressing FLAG-tagged CCT alpha using the lung-specific human surfactant protein C (SP-C) promoter. We conclude that CCT alpha does not localize to the nucleus in pulmonary tissues, and, therefore, nuclear localization of CCT alpha is not a universal event.  相似文献   

8.
Tissue in situ hybridization has been used on sections of developing rat lung to follow the cellular sites of mRNA expression for a protein identified only in bronchiolar Clara cells. The mRNA for this Clara cell protein (CCP) was first detected on gestational day 16 in only one of the two types of tubules existing in the lung at this developmental stage. During the next 2 days CCP mRNA expression increased uniformly only in the epithelium lining the respiratory tubules. By gestational day 19, CCP mRNA expression became limited to secretory epithelial cells lining the bronchi, and terminal bronchioles. By neonatal day 1, an intense hybridization signal was observed along all of the conducting airways, but it was irregular due to the fact that expression of the CCP gene was limited to the secretory epithelial cells. In adult rats, CCP mRNA was expressed not only in secretory cells of the intrapulmonary airways at all anatomical levels, but also in secretory epithelial cells lining the trachea and its glands, as well as in specific alveolar cells thought to be type II pneumocytes. These findings demonstrate that the regulation of the CCP gene during lung development is a complicated process and that the expression of CCP mRNA does not parallel exactly the sequential development of the airways.  相似文献   

9.
Studies on the localization of paraoxonases (PON's) are of interest because of its involvement in both the detoxication of activated organophosphorus pesticides and in the prevention of peroxidative damage to phospholipids and cholesteryl-esters in LDL and HDL particles and cell membranes during the atherogenic process. In the present study, we have investigated the cellular localization of PON1 by immunohistochemistry in different rat tissues. The protein was mainly detected in the endothelial lining of every tissue studied (liver, kidney, lung and brain). Besides, it was found in hepatocytes from the centrolobular region of the liver, in the glomeruli and basal pole of the proximal convoluted tubule of the kidney, in cells from bronchiolar epithelium and type I pneumocytes of the lung, and in leptomeningeal cells, ependymal cells and ventricular side of choroid plexus cells of the brain. However, neurons and glia lacked immunostaining. After 3-methylcholanthrene induction an increase in the intensity of immunostaining was observed in the same areas, as well as an additional staining in midzonal hepatocytes. On the basis of the tissue distribution observed for PON1, it is proposed that this enzyme might have a function related to the inactivation of oxidative stress by-products (either at a cellular level or blood-vessel wall) and other environmental chemicals. At present it has not yet been established whether the paraoxonase detected in the various tissues is truly a product of the PON1 gene or could represent products of the PON2 or PON3 genes.  相似文献   

10.
Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs). Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.  相似文献   

11.
Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs). Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.  相似文献   

12.
Previous studies of the intrapulmonary conducting airways of sheep and rabbit have demonstrated marked diversity in the epithelial populations lining them. Because studies of trachea and centriacinar regions of macaque monkeys suggested that primates may be even more diverse, the present study was designed to characterize the epithelial population throughout the airway tree of one primate species, the rhesus monkey. Trachea and intrapulmonary airways of the right cranial and middle lobes of glutaraldehyde/paraformaldehyde-infused lungs of five adult rhesus monkeys were microdissected following the axial pathway. Each branch was assigned a binary number indicating its specific location within the tree. The trachea and six generations of intrapulmonary airway from the right cranial lobe were evaluated for ultrastructure and quantitative histology as were those of the right middle lobe for quantitative carbohydrate histochemistry. Four cell types were identified throughout the tree: ciliated, mucous goblet, small mucous granule, and basal. The tallest epithelium lined the trachea; the shortest, the respiratory bronchiole. The most cells per unit length of basement membrane were in proximal intrapulmonary bronchi; the least, in the respiratory bronchiole. The nonciliated bronchiolar epithelial or Clara cell was restricted to respiratory bronchioles. Sulfomucins were present in the vast majority of surface goblet cells in the trachea and proximal bronchi. In proximal bronchi, neutral glycoconjugates predominated in glands and acidic glycoconjugates in surface epithelium. In terminal and respiratory bronchioles the ratio of acidic glycoconjugate to neutral glycoconjugate equaled that in proximal bronchi, although glands were not present. Sulfomucins were minimal in terminal airways. We conclude that the characteristics of the epithelial lining of the mammalian tracheobronchial airway tree are very species-specific. The lining of the rhesus monkey does not have the diversity in cell types in different airway generations observed in sheep and rabbit. Also, the populations lining these airways in the rhesus are very different from either the sheep or rabbit in number, proportions of different cell types, glycoconjugate content, and distribution of specific cell types.  相似文献   

13.
Based on data developed with the use of isolated lipid droplets from neonatal rat lung lipofibroblasts, we speculated previously that the droplet coat protein, adipose differentiation-related protein (ADFP), mediated the transfer of lipids into type 2 lung epithelial cells for the production of surfactant phospholipids. The present studies were designed to test the role of ADFP in this transfer with the use of ADFP-coated lipid droplets from CHO fibroblast cells and a cultured human lung epithelial cell line. We found no role for ADFP in the lipid transfer and conclude that a lipase associated with the lipid droplets hydrolyzes their core triacylglycerols, releasing fatty acids that are taken up by the epithelial cells.  相似文献   

14.
15.
Phospholipids serve as central structural components in cellular membranes and as potent mediators in numerous signaling pathways. There are six main classes of naturally occurring phospholipids distinguished by their distinct polar head groups that contain many unique molecular species with distinct fatty acid composition. Phospholipid molecular species are often expressed as isobaric species that are denoted by the phospholipid class and the total number of carbon atoms and double bonds contained in the esterified fatty acyl groups (e.g., phosphatidylcholine 34:2). Techniques to separate these molecules exist, and each has positive and negative attributes. Hydrophilic interaction liquid chromatography uses polar bonded silica to separate lipids by polar head group but not by specific molecular species. Reversed phase (RP) chromatography can separate by fatty acyl chain composition but not by polar head group. Herein we describe a new strategy called differential ion mobility spectrometry (DMS), which separates phospholipid classes by their polar head group. Combining DMS with current LC methods enhances phospholipid separation by increasing resolution, specificity, and signal-to-noise ratio. Additional application of specialized information-dependent acquisition methodologies along with RP chromatography allows full isobaric resolution, identification, and compositional characterization of specific phospholipids at the molecular level.  相似文献   

16.
The entire alveolar surface is lined by a thin fluid continuum. As a consequence, surface forces at the air-liquid interface are operative, which in part are transmitted to the delicate lung tissue. Morphologic and morphometric analyses of lungs show that the alveolar surface forces exert a moulding effect on alveolar tissue elements. In particular, in lungs at low degrees of inflation, equivalent to the volume range of normal breathing, there is a derecruitment of alveolar surface area with increasing surface tensions which reflects equilibrium configurations of peripheral air spaces where the sum of tissue energy and surface energy is minimum. Thus, changes in surface tension alter the recoil pressure of the lung directly and indirectly by deforming lung tissue and hence changing tissue tensions. However, the interplay between tissue and surface forces is rather complex, and there is a marked volume dependence of the shaping influence of surface forces. With increasing lung volumes the tissue forces transmitted by the fiber scaffold of the lung become the predominant factor of alveolar micromechanics: at lung volumes of 80% total lung capacity or more, the alveolar surface area-volume relation is largely independent of surface tension. Most important, within the range of normal breathing, the surface tension, its variations and the associated variations in surface area are small. The moulding power of surface forces also affects the configuration of capillaries, and hence the microcirculation, of free cellular elements such as the alveolar macrophages beneath the surface lining layer, and of the surfaces of the peripheral airways. Still enigmatic is the coupling mechanism between the fluid continua of alveoli and airways which might also be of importance for alveolar clearance. As to the surface active lining layer of peripheral air spaces, which determines alveolar surface tension, its structure and structure-function relationship are still ill-defined owing to persisting problems of film preservation and fixation. Electron micrographs of alveolar tissue, of lining layers of captive bubbles, and scanning force micrographs of surfactant films transferred on mica plates reveal a complex structural pattern which precludes so far the formulation of an unequivocal hypothesis.  相似文献   

17.
Inhaled and deposited spherical particles, 1-6 micrometer in diameter and of differing surface chemistry and topography, were studied in hamster intrapulmonary conducting airways and alveoli by electron microscopy. Polystyrene and Teflon particles, as well as puffball spores, were found submersed in the aqueous lining layer and adjacent to epithelial cells. The extent of particle immersion promoted by a surfactant film was assessed in a "floating-drop-surface balance" by light microscopy. Teflon and polystyrene spheres were immersed into the subphase by 50-60% at film surface tensions of 25 and 30 mJ/m(2), respectively, and totally submersed at 15 and 25 mJ/m(2), respectively. Puffball spores were immersed by approximately 50% at 22 mJ/m(2) and totally submersed at film surface tensions of 相似文献   

18.
Sterically stabilized liposomes are able to localize at sites of infection and could serve as carriers of antimicrobial agents. For a rational optimization of liposome localization, the blood clearance kinetics and biodistribution of liposomes differing in poly(ethylene glycol) (PEG) density, particle size, bilayer fluidity or surface charge were studied in a rat model of a unilateral pneumonia caused by Klebsiella pneumoniae. It is shown that all liposome preparations studied localize preferentially in the infected lung compared to the contralateral non-infected lung. A reduction of the PEG density or rise in particle size resulted in a higher uptake by the mononuclear phagocyte system, lower blood circulation time and lower infected lung localization. Differences in bilayer fluidity did not affect blood clearance kinetics or localization in the infected lung. Increasing the amount of negatively charged phospholipids in the liposome bilayer did not affect blood clearance kinetics, but did reduce localization of this liposome preparation at the site of lung infection. In conclusion, the degree of localization at the infected site is remarkably independent of the physicochemical characteristics of the PEG liposomes. Substantial selective liposome localization can be achieved provided that certain criteria regarding PEG density, size and inclusion of charged phospholipids are met. These properties seem to be a direct consequence of the presence of the polymer coating operating as a repulsive steric barrier opposing interactions with biological components.  相似文献   

19.
Molecular events involved in successful embryo implantation are not well understood. In this study, we used MALDI imaging mass spectrometry (IMS) technologies to characterize the spatial and temporal distribution of phospholipid species associated with mouse embryo implantation. Molecular images showing phospholipid distribution within implantation sites changed markedly between distinct cellular areas during days 4–8 of pregnancy. For example, by day 8, linoleate- and docosahexaenoate-containing phospholipids localized to regions destined to undergo cell death, whereas oleate-containing phospholipids localized to angiogenic regions. Arachidonate-containing phospholipids showed different segregation patterns depending on the lipid class, revealing a strong correlation of phosphatidylethanolamines and phosphatidylinositols with cytosolic phospholipase A and cyclooxygenase-2 during embryo implantation. LC-ESI-MS/MS was used to validate MALDI IMS phospholipid distribution patterns. Overall, molecular images revealed the dynamic complexity of lipid distributions in early pregnancy, signifying the importance of complex interplay of lipid molecules in uterine biology and implantation.  相似文献   

20.
At birth, the opossum lung is remarkably primitive and consists of a system of branching airways that end in a number of terminal air chambers. From the newborn through the 10 cm stage of development the conducting portion of the lung predominates. The air chambers, which represent portions of the conducting system modified for respiration, are in a constant state of evolution since they are destined to become part of the expanding bronchial system. The airways are devoid of cilia and goblet cells at birth, and are lined by columnar epithelial cells which contain two types of cytoplasmic granules: an electron-dense form and a heterogeneous form. The latter exhibits an electron-dense core surrounded initially by a large halo of flocculent material. This type of granule is not seen beyond the 8 cm stage. The terminal air chambers of the newborn and later stages are lined type I and type II alveolocytes that appear identical to the alveolocytes lining alveoli in the adult. By the 2.5 cm stage, scattered cilia are present in the trachea and bronchi and bands of smooth muscle have differentiated in relation to bronchial epithelium and to proximal areas of the terminal chambers. Citiated cells are separated by ridges composed of light and dark cells which are without cilia and which contain scattered electron-dence granules. Throughout the postnatal period numerous alveolar macrophages and mast cells are noted in relation to the conducting system and pleura. Differentiation of the pleura also occurs during the postnatal period. In the newborn the pleura is simple squamous mesothelium. Later stages develop a thick connective tissue lamina between the pleural mesothelium and lung parenchyma. A large band of elastin is interposed between the mesothelium and underlying bundles of collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号