首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis.  相似文献   

5.
Although microRNAs (miRNAs) are involved in many biological processes, the mechanisms whereby miRNAs regulate osteoblastic differentiation are poorly understood. Here, we found that BMP-4-induced osteoblastic differentiation of bone marrow-derived ST2 stromal cells was promoted and repressed after transfection of sense and antisense miR-210, respectively. A reporter assay demonstrated that the activin A receptor type 1B (AcvR1b) gene was a target for miR-210. Furthermore, inhibition of transforming growth factor-β (TGF-β)/activin signaling in ST2 cells with SB431542 promoted osteoblastic differentiation. We conclude that miR-210 acts as a positive regulator of osteoblastic differentiation by inhibiting the TGF-β/activin signaling pathway through inhibition of AcvR1b.  相似文献   

6.
7.
Yeh JI  Du S  Tortajada A  Paulo J  Zhang S 《Biochemistry》2005,44(51):16912-16919
Toward enhancing in vitro membrane protein studies, we have utilized small self-assembling peptides with detergent properties ("peptergents") to extract and stabilize the integral membrane flavoenzyme, glycerol-3-phosphate dehydrogenase (GlpD), and the soluble redox flavoenzyme, NADH peroxidase (Npx). GlpD is a six transmembrane spanning redox enzyme that catalyzes the oxidation of glycerol-3-phosphate to dihydroxyacetone phosphate. Although detergents such as n-octyl-beta-D-glucpyranoside can efficiently solubilize the enzyme, GlpD is inactivated within days once reconstituted into detergent micelles. In contrast, peptergents can efficiently extract and solubilize GlpD from native Escherichia coli membrane and maintain its enzymatic activity up to 10 times longer than in traditional detergents. Intriguingly, peptergents also extended the activity of a soluble flavoenzyme, Npx, when used as an additive. Npx is a flavoenzyme that catalyzes the two-electron reduction of hydrogen peroxide to water using a cysteine-sulfenic acid as a secondary redox center. The lability of the peroxidase results from oxidation of the sulfenic acid to the sulfinic or sulfonic acid forms. Oxidation of the sulfenic acid, the secondary redox center, results in inactivation, and this reaction proceeds in vitro even in the presence of reducing agents. Although the exact mechanism by which peptergents influence solution stability of Npx remains to be determined, the positive effects may be due to antioxidant properties of the peptides. Peptide-based detergents can be beneficial for many applications and may be particularly useful for structural and functional studies of membrane proteins due to their propensity to enhance the formation of ordered supramolecular assemblies.  相似文献   

8.
9.
The cytosolic activity of glycerol-3-phosphate dehydrogenase 1 (GPD1, EC 1.1.1.8) plays an important role in the synthesis of triacylglycerol and in the transport of reducing equivalents from the cytosol to mitochondria. Here we report the full-length genomic sequence of porcine GPD1 gene including promoter region. Porcine GPD1 gene contains eight exons and seven introns. Using the ImpRH, the GPD1 gene was mapped on chromosome 5. Sub-cellular localization of the pig GPD1 was localized in cytoplasm by GFP reporter gene. The full-length CDS of porcine GPD1 gene comprises 1050 nucleotides and it encodes 349 amino acids. Using the CDS sequences of 17 species, we built the phylogeny tree of GPD1 gene. We investigated the expression level of the gene in 13 different tissues and time course from birth to postnatal day 28 in longissinus doris muscle (LD) and in cerebrum. The result shows that porcine GPD1 gene is expressed in almost all tissues we tested but its levels of expression varies widely over 2 orders of magnitude. LD and the cerebrum have similar expression pattern that is at a low level at birth and increasing with aging to the highest level at postnatal day 8 in LD and postnatal day 14 in cerebrum. But weaning decreased the expression level of the GPD1 gene. This may partially explains the effects of weaning on energy metabolism.  相似文献   

10.
11.
12.
Fluoro-o-hydorxyacetone phosphate (fluoroacetol phosphate) has been prepared by oxidation of 1-fluoro-3-chloro-2-propanol to 1-fluoro-3-chloroacetone, phosphorylation with silver dibenzylphosphate, and the intermediate isolation of 1-fluoro-3-hydroxyacetone phosphate dibenzyl ester, followed by catalytic hydrogenation and preparation of the stable monosodium salt. The chloro analog as the pure, stable monosodium salt has been prepared by a similar route from 1,3-dichloroacetone. 1-Fluoro-3-hydroxyacetone-P is substrate for cytosolic NAD+-linked glycerol-3-P dehydrogenese (EC 1.1.1.8) from rabbit skeletal muscle with an apparent Km of 50 mM under conditions in which dihydroxyacetone-P exhibits an apparent Km of 0.15 mM. Under these conditions the fluoro analog is 85% hydrated wheras dihydroxyacetone-P has been shown by others to be 44% hydrated. The turnover numbers are 49,000 molecules of NADH oxidized per minute per molecule of enzyme at 25 degrees with the fluoro analog as substrate, and 60,000 with dihydrocyacetone-P as substrate. The product of the reduction of the fluoro analog has been identified as 1-fluorodeoxyglycerol-3-P. 1-Fluoro-3-hydroxyacetone-P is comparatively weak irreversible inhibitor at 4 degrees of rabbit muscle triosephosphate isomerase (EC 5.3.1.1) with second-order rate constant of 2.6 M minus 1 sec minus 1. Inhibition by pyrazole in vivo of alcohol dehydrogenese catalyzed oxidation of 1-fluorodeoxyglecerol-3-P indicates in mice the reduction of 1-fluoro-3-hydroxyacetone-P to -l-1-fluorodexoxyglycerol-3-P is not significant metabolic route, or that an alternative route exists when the alcohol dehydrogenase dependent pathway is inhibited.  相似文献   

13.
14.
15.
16.
The GPD2 gene, encoding NAD+-dependent glycerol-3-phosphate dehydrogenase in an industrial ethanol-producing strain of Saccharomyces cerevisiae, was deleted. And then, either the non-phosphorylating NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Bacillus cereus, or the NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Kluyveromyces lactis, was expressed in the obtained mutant AG2 deletion of GPD2, respectively. The resultant recombinant strain AG2A (gpdP PGK -gapN) exhibited a 48.70 ± 0.34% (relative to the amount of substrate consumed) decrease in glycerol production and a 7.60 ± 0.12% (relative to the amount of substrate consumed) increase in ethanol yield, while recombinant AG2B (gpdP PGK -GAPDH) exhibited a 52.90 ± 0.45% (relative to the amount of substrate consumed) decrease in glycerol production and a 7.34 ± 0.15% (relative to the amount of substrate consumed) increase in ethanol yield compared with the wild-type strain. More importantly, the maximum specific growth rates (μ max) of the recombinant AG2A and AG2B were higher than that of the mutant gpd2Δ and were indistinguishable compared with the wild-type strain in anaerobic batch fermentations. The results indicated that the redox imbalance of the mutant could be partially solved by expressing the heterologous genes.  相似文献   

17.
The Gab1 protein is tyrosine phosphorylated in response to various growth factors and serves as a docking protein that recruits a number of downstream signaling proteins, including phosphatidylinositol 3-kinase (PI-3 kinase). To determine the role of Gab1 in signaling via the epidermal growth factor (EGF) receptor (EGFR) we tested the ability of Gab1 to associate with and modulate signaling by this receptor. We show that Gab1 associates with the EGFR in vivo and in vitro via pTyr sites 1068 and 1086 in the carboxy-terminal tail of the receptor and that overexpression of Gab1 potentiates EGF-induced activation of the mitogen-activated protein kinase and Jun kinase signaling pathways. A mutant of Gab1 unable to bind the p85 subunit of PI-3 kinase is defective in potentiating EGFR signaling, confirming a role for PI-3 kinase as a downstream effector of Gab1. Inhibition of PI-3 kinase by a dominant-interfering mutant of p85 or by Wortmannin treatment similarly impairs Gab1-induced enhancement of signaling via the EGFR. The PH domain of Gab1 was shown to bind specifically to phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], a product of PI-3 kinase, and is required for activation of Gab1-mediated enhancement of EGFR signaling. Moreover, the PH domain mediates Gab1 translocation to the plasma membrane in response to EGF and is required for efficient tyrosine phosphorylation of Gab1 upon EGF stimulation. In addition, overexpression of Gab1 PH domain blocks Gab1 potentiation of EGFR signaling. Finally, expression of the gene for the lipid phosphatase PTEN, which dephosphorylates PtdIns(3,4, 5)P3, inhibits EGF signaling and translocation of Gab1 to the plasma membrane. These results reveal a novel positive feedback loop, modulated by PTEN, in which PI-3 kinase functions as both an upstream regulator and a downstream effector of Gab1 in signaling via the EGFR.  相似文献   

18.
19.
In Saccharomyces cerevisiae, activation of Cdc42 by its guanine-nucleotide exchange factor Cdc24 triggers polarization of the actin cytoskeleton at bud emergence and in response to mating pheromones. The adaptor protein Bem1 localizes to sites of polarized growth where it interacts with Cdc42, Cdc24 and the PAK-like kinase Cla4. We have isolated Bem1 mutants (Bem1-m), which are specifically defective for binding to Cdc24. The mutations map within the conserved PB1 domain, which is necessary and sufficient to interact with the octicos peptide repeat (OPR) motif of Cdc24. Although Bem1-m mutant proteins localize normally, bem1-m cells are unable to maintain Cdc24 at sites of polarized growth. As a consequence, they are defective for apical bud growth and the formation of mating projections. Localization of Bem1 to the incipient bud site requires activated Cdc42, and conversely, expression of Cdc42-GTP is sufficient to accumulate Bem1 at the plasma membrane. Thus, our results suggest that Bem1 functions in a positive feedback loop: local activation of Cdc24 produces Cdc42-GTP, which recruits Bem1. In turn, Bem1 stabilizes Cdc24 at the site of polarization, leading to apical growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号