首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrobacterium tumefaciens translocates DNA and protein substrates between cells via a type IV secretion system (T4SS) whose channel subunits include the VirD4 coupling protein, VirB11 ATPase, VirB6, VirB8, VirB2, and VirB9. In this study, we used linker insertion mutagenesis to characterize the contribution of the outer-membrane-associated VirB9 to assembly and function of the VirB/D4 T4SS. Twenty-five dipeptide insertion mutations were classified as permissive for intercellular substrate transfer (Tra+), completely transfer defective (Tra-), or substrate discriminating, e.g., selectively permissive for transfer only of the oncogenic transfer DNA and the VirE2 protein substrates or of a mobilizable IncQ plasmid substrate. Mutations inhibiting transfer of DNA substrates did not affect formation of close contacts of the substrate with inner membrane channel subunits but blocked formation of contacts with the VirB2 and VirB9 channel subunits, which is indicative of a defect in assembly or function of the distal portion of the secretion channel. Several mutations in the N- and C-terminal regions disrupted VirB9 complex formation with the outer-membrane-associated lipoprotein VirB7 or the inner membrane energy sensor VirB10. Several VirB9.i2-producing Tra+ strains failed to elaborate T pilus at detectable levels (Pil-), and three such Tra+ Pil- mutant strains were rendered Tra- upon deletion of virB2, indicating that the cellular form of pilin protein is essential for substrate translocation. Our findings, together with computer-based analyses, support a model in which distinct domains of VirB9 contribute to substrate selection and translocation, establishment of channel subunit contacts, and T-pilus biogenesis.  相似文献   

2.
Agrobacterium tumefaciens VirB10 couples inner membrane (IM) ATP energy consumption to substrate transfer through the VirB/D4 type IV secretion (T4S) channel and also mediates biogenesis of the virB -encoded T pilus. Here, we determined the functional importance of VirB10 domains denoted as the: (i) N-terminal cytoplasmic region, (ii) transmembrane (TM) α-helix, (iii) proline-rich region (PRR) and (iv) C-terminal β-barrel domain. Mutations conferring a transfer- and pilus-minus (Tra-, Pil-) phenotype included PRR deletion and β-barrel substitution mutations that prevented VirB10 interaction with the outer membrane (OM) VirB7–VirB9 channel complex. Mutations permissive for substrate transfer but blocking pilus production (Tra+, Pil-) included a cytoplasmic domain deletion and TM domain insertion mutations. Another class of Tra+ mutations also selectively disrupted pilus biogenesis but caused release of pilin monomers to the milieu; these mutations included deletions of α-helical projections extending from the β-barrel domain. Our findings, together with results of Cys accessibility studies, indicate that VirB10 stably integrates into the IM, extends via its PRR across the periplasm, and interacts via its β-barrel domain with the VirB7–VirB9 channel complex. The data further support a model that distinct domains of VirB10 regulate formation of the secretion channel or the T pilus.  相似文献   

3.
The bitopic membrane protein VirB10 of the Agrobacterium VirB/VirD4 type IV secretion system (T4SS) undergoes a structural transition in response to sensing of ATP binding or hydrolysis by the channel ATPases VirD4 and VirB11. This transition, detectable as a change in protease susceptibility, is required for DNA substrate passage through the translocation channel. Here, we present evidence that DNA substrate engagement with VirD4 and VirB11 also is required for activation of VirB10. Several DNA substrates (oncogenic T-DNA and plasmids RSF1010 and pCloDF13) induced the VirB10 conformational change, each by mechanisms requiring relaxase processing at cognate oriT sequences. VirD2 relaxase deleted of its translocation signal or any of the characterized relaxases produced in the absence of cognate DNA substrates did not induce the structural transition. Translocated effector proteins, e.g., VirE2, VirE3, and VirF, also did not induce the transition. By mutational analyses, we supplied evidence that the N-terminal periplasmic loop of VirD4, in addition to its catalytic site, is essential for early-stage DNA substrate transfer and the VirB10 conformational change. Further studies of VirB11 mutants established that three T4SS-mediated processes, DNA transfer, protein transfer, and pilus production, can be uncoupled and that the latter two processes proceed independently of the VirB10 conformational change. Our findings support a general model whereby DNA ligand binding with VirD4 and VirB11 stimulates ATP binding/hydrolysis, which in turn activates VirB10 through a structural transition. This transition confers an open-channel configuration enabling passage of the DNA substrate to the cell surface.  相似文献   

4.
The Agrobacterium tumefaciens VirB/VirD4 type IV secretion system is composed of a translocation channel and an extracellular T pilus. Bitopic VirB10, the VirB7 lipoprotein, and VirB9 interact to form a cell envelope-spanning structural scaffold termed the “core complex” that is required for the assembly of both structures. The related pKM101-encoded core complex is composed of 14 copies each of these VirB homologs, and the transmembrane (TM) α helices of VirB10-like TraF form a 55-Å-diameter ring at the inner membrane. Here, we report that the VirB10 TM helix possesses two types of putative dimerization motifs, a GxxxA (GA4) motif and two leucine (Leu1, Leu2) zippers. Mutations in the Leu1 motif disrupted T-pilus biogenesis, but these or other mutations in the GA4 or Leu2 motif did not abolish substrate transfer. Replacement of the VirB10 TM domain with a nondimerizing poly-Leu/Ala TM domain sequence also blocked pilus production but not substrate transfer or formation of immunoprecipitable complexes with the core subunits VirB7 and VirB9 and the substrate receptor VirD4. The VirB10 TM helix formed weak homodimers in Escherichia coli, as determined with the TOXCAT assay, whereas replacement of the VirB10 TM helix with the strongly dimerizing TM helix from glycophorin A blocked T-pilus biogenesis in A. tumefaciens. Our findings support a model in which VirB10''s TM helix contributes to the assembly or activity of the translocation channel as a weakly self-interacting membrane anchor but establishes a heteromeric TM-TM helix interaction via its Leu1 motif that is critical for T-pilus biogenesis.  相似文献   

5.
The VirB11 ATPase is a subunit of the Agrobacterium tumefaciens transfer DNA (T-DNA) transfer system, a type IV secretion pathway required for delivery of T-DNA and effector proteins to plant cells during infection. In this study, we examined the effects of virB11 mutations on VirB protein accumulation, T-pilus production, and substrate translocation. Strains synthesizing VirB11 derivatives with mutations in the nucleoside triphosphate binding site (Walker A motif) accumulated wild-type levels of VirB proteins but failed to produce the T-pilus or export substrates at detectable levels, establishing the importance of nucleoside triphosphate binding or hydrolysis for T-pilus biogenesis. Similar findings were obtained for VirB4, a second ATPase of this transfer system. Analyses of strains expressing virB11 dominant alleles in general showed that T-pilus production is correlated with substrate translocation. Notably, strains expressing dominant alleles previously designated class II (dominant and nonfunctional) neither transferred T-DNA nor elaborated detectable levels of the T-pilus. By contrast, strains expressing most dominant alleles designated class III (dominant and functional) efficiently translocated T-DNA and synthesized abundant levels of T pilus. We did, however, identify four types of virB11 mutations or strain genotypes that selectively disrupted substrate translocation or T-pilus production: (i) virB11/virB11* merodiploid strains expressing all class II and III dominant alleles were strongly suppressed for T-DNA translocation but efficiently mobilized an IncQ plasmid to agrobacterial recipients and also elaborated abundant levels of T pilus; (ii) strains synthesizing two class III mutant proteins, VirB11, V258G and VirB11.I265T, efficiently transferred both DNA substrates but produced low and undetectable levels of T pilus, respectively; (iii) a strain synthesizing the class II mutant protein VirB11.I103T/M301L efficiently exported VirE2 but produced undetectable levels of T pilus; (iv) strains synthesizing three VirB11 derivatives with a four-residue (HMVD) insertion (L75.i4, C168.i4, and L302.i4) neither transferred T-DNA nor produced detectable levels of T pilus but efficiently transferred VirE2 to plants and the IncQ plasmid to agrobacterial recipient cells. Together, our findings support a model in which the VirB11 ATPase contributes at two levels to type IV secretion, T-pilus morphogenesis, and substrate selection. Furthermore, the contributions of VirB11 to machine assembly and substrate transfer can be uncoupled by mutagenesis.  相似文献   

6.
This study characterized the contribution of Agrobacterium tumefaciens VirB6, a polytopic inner membrane protein, to the formation of outer membrane VirB7 lipoprotein and VirB9 protein multimers required for type IV secretion. VirB7 assembles as a disulfide cross-linked homodimer that associates with the T pilus and a VirB7-VirB9 heterodimer that stabilizes other VirB proteins during biogenesis of the secretion machine. Two presumptive VirB protein complexes, composed of VirB6, VirB7, and VirB9 and of VirB7, VirB9, and VirB10, were isolated by immunoprecipitation or glutathione S-transferase pulldown assays from detergent-solubilized membrane extracts of wild-type A348 and a strain producing only VirB6 through VirB10 among the VirB proteins. To examine the biological importance of VirB6 complex formation for type IV secretion, we monitored the effects of nonstoichiometric VirB6 production and the synthesis of VirB6 derivatives with 4-residue insertions (VirB6.i4) on VirB7 and VirB9 multimerization, T-pilus assembly, and substrate transfer. A virB6 gene deletion mutant accumulated VirB7 dimers at diminished steady-state levels, whereas complementation with a plasmid bearing wild-type virB6 partially restored accumulation of the dimers. VirB6 overproduction was correlated with formation of higher-order VirB9 complexes or aggregates and also blocked substrate transfer without a detectable disruption of T-pilus production; these phenotypes were displayed by cells grown at 28 degrees C, a temperature that favors VirB protein turnover, but not by cells grown at 20 degrees C. Strains producing several VirB6.i4 mutant proteins assembled novel VirB7 and VirB9 complexes detectable by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two strains producing the D60.i4 and L191.i4 mutant proteins translocated IncQ plasmid and VirE2 effector protein substrates in the absence of a detectable T pilus. Our findings support a model that VirB6 mediates formation of VirB7 and VirB9 complexes required for biogenesis of the T pilus and the secretion channel.  相似文献   

7.
J Haase  E Lanka 《Journal of bacteriology》1997,179(18):5728-5735
TraF, an essential component of the conjugative transfer apparatus of the broad-host-range plasmid RP4 (IncP), which is located at the periplasmic side of the cytoplasmic membrane, encodes a specific protease. The traF gene products of IncP and Ti plasmids show extensive similarities to prokaryotic and eukaryotic signal peptidases. Mutational analysis of RP4 TraF revealed that the mechanism of the proteolytic cleavage reaction resembles that of signal and LexA-like peptidases. Among the RP4 transfer functions, the product of the Tra2 gene, trbC, was identified as a target for the TraF protease activity. TrbC is homologous to VirB2 of Ti plasmids and thought to encode the RP4 prepilin. The maturation of TrbC involves three processing reactions: (i) the removal of the N-terminal signal peptide by Escherichia coli signal peptidase I (Lep), (ii) a proteolytic cleavage at the C terminus by an as yet unidentified host cell enzyme, and (iii) C-terminal processing by TraF. The third reaction of the maturation process is critical for conjugative transfer, pilus synthesis, and the propagation of the donor-specific bacteriophage PRD1. Thus, cleavage of TrbC by TraF appears to be one of the initial steps in a cascade of processes involved in export of the RP4 pilus subunit and pilus assembly mediated by the RP4 mating pair formation function.  相似文献   

8.
9.
Pilus biogenesis on the surface of uropathogenic Escherichia coli requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway, periplasmic chaperone-subunit complexes target an outer membrane (OM) usher for subunit assembly into pili and secretion to the cell surface. The molecular mechanisms of protein secretion across the OM are not well understood. Mutagenesis of the P pilus usher PapC and the type 1 pilus usher FimD was undertaken to elucidate the initial stages of pilus biogenesis at the OM. Deletion of residues 2 to 11 of the mature PapC N terminus abolished the targeting of the usher by chaperone-subunit complexes and rendered PapC nonfunctional for pilus biogenesis. Similarly, an intact FimD N terminus was required for chaperone-subunit binding and pilus biogenesis. Analysis of PapC-FimD chimeras and N-terminal fragments of PapC localized the chaperone-subunit targeting domain to the first 124 residues of PapC. Single alanine substitution mutations were made in this domain that blocked pilus biogenesis but did not affect targeting of chaperone-subunit complexes. Thus, the usher N terminus does not function simply as a static binding site for chaperone-subunit complexes but also participates in subsequent pilus assembly events.  相似文献   

10.
Agrobacterium tumefaciens transfers oncogenic T-DNA and effector proteins to plant cells via a type IV secretion pathway. This transfer system, assembled from the products of the virB operon, is thought to consist of a transenvelope mating channel and the T pilus. When screened for the presence of VirB and VirE proteins, material sheared from the cell surface of octopine strain A348 was seen to possess detectable levels of VirB2 pilin, VirB5, and the VirB7 outer membrane lipoprotein. Material sheared from the cell surface of most virB gene deletion mutants also possessed VirB7, but not VirB2 or VirB5. During purification of the T pilus from wild-type cells, VirB2, VirB5, and VirB7 cofractionated through successive steps of gel filtration chromatography and sucrose density gradient centrifugation. A complex containing VirB2 and VirB7 was precipitated from a gel filtration fraction enriched for T pilus with both anti-VirB2 and anti-VirB7 antiserum. Both the exocellular and cellular forms of VirB7 migrated as disulfide-cross-linked dimers and monomers when samples were electrophoresed under nonreducing conditions. A mutant synthesizing VirB7 with a Ser substitution of the lipid-modified Cys15 residue failed to elaborate the T pilus, whereas a mutant synthesizing VirB7 with a Ser substitution for the disulfide-reactive Cys24 residue produced very low levels of T pilus. Together, these findings establish that the VirB7 lipoprotein localizes exocellularly, it associates with the T pilus, and both VirB7 lipid modification and disulfide cross-linking are important for T-pilus assembly. T-pilus-associated VirB2 migrated in nonreducing gels as a monomer and a disulfide-cross-linked homodimer, whereas cellular VirB2 migrated as a monomer. A strain synthesizing a VirB2 mutant with a Ser substitution for the reactive Cys64 residue elaborated T pilus but exhibited an attenuated virulence phenotype. Dithiothreitol-treated T pilus composed of native VirB2 pilin and untreated T pilus composed of the VirB2C64S mutant pilin distributed in sucrose gradients more predominantly in regions of lower sucrose density than untreated, native T pili. These findings indicate that intermolecular cross-linking of pilin monomers is not required for T-pilus production, but cross-linking does contribute to T-pilus stabilization.  相似文献   

11.
TrwD, the VirB11 homologue in conjugative plasmid R388, is a member of the large secretion ATPase superfamily, which includes ATPases from bacterial type II and type IV secretion systems, type IV pilus, and archaeal flagellae assembly. Based on structural studies of the VirB11 homologues in Helicobacter pylori and Brucella suis and the archaeal type II secretion ATPase GspE, a unified mechanism for the secretion ATPase superfamily has been proposed. Here, we have found that the ATP turnover of TrwD is down-regulated by physiological concentrations of magnesium. This regulation is exerted by increasing the affinity for ADP, hence delaying product release. Circular dichroism and limited proteolysis analysis indicate that magnesium induces conformational changes in the protein that promote a more rigid, but less active, form of the enzyme. The results shown here provide new insights into the catalytic mechanism of the secretion ATPase superfamily.  相似文献   

12.
Type IV secretion systems (T4SS) mediate the transfer of DNA and protein substrates to target cells. TrwK, encoded by the conjugative plasmid R388, is a member of the VirB4 family, comprising the largest and most conserved proteins of T4SS. VirB4 was suggested to be an ATPase involved in energizing pilus assembly and substrate transport. However, conflicting experimental evidence concerning VirB4 ATP hydrolase activity was reported. Here, we demonstrate that TrwK is able to hydrolyze ATP in vitro in the absence of its potential macromolecular substrates and other T4SS components. The kinetic parameters of its ATPase activity have been characterized. The TrwK oligomerization state was investigated by analytical ultracentrifugation and electron microscopy, and its effects on ATPase activity were analyzed. The results suggest that the hexameric form of TrwK is the catalytically active state, much like the structurally related protein TrwB, the conjugative coupling protein.  相似文献   

13.
Recent studies have shown that conjugation systems of Gram‐negative bacteria are composed of distinct inner and outer membrane core complexes (IMCs and OMCCs, respectively). Here, we characterized the OMCC by focusing first on a cap domain that forms a channel across the outer membrane. Strikingly, the OMCC caps of the Escherichia coli pKM101 Tra and Agrobacterium tumefaciens VirB/VirD4 systems are completely dispensable for substrate transfer, but required for formation of conjugative pili. The pKM101 OMCC cap and extended pilus also are dispensable for activation of a Pseudomonas aeruginosa type VI secretion system (T6SS). Chimeric conjugation systems composed of the IMCpKM101 joined to OMCCs from the A. tumefaciens VirB/VirD4, E. coli R388 Trw, and Bordetella pertussis Ptl systems support conjugative DNA transfer in E. coli and trigger P. aeruginosa T6SS killing, but not pilus production. The A. tumefaciens VirB/VirD4 OMCC, solved by transmission electron microscopy, adopts a cage structure similar to the pKM101 OMCC. The findings establish that OMCCs are highly structurally and functionally conserved – but also intrinsically conformationally flexible – scaffolds for translocation channels. Furthermore, the OMCC cap and a pilus tip protein coregulate pilus extension but are not required for channel assembly or function.  相似文献   

14.
Uropathogenic strains of Escherichia coli assemble type 1 and P pili to colonize the bladder and kidney respectively. These pili are prototype structures assembled by the chaperone/usher secretion pathway. In this pathway, a periplasmic chaperone works together with an outer membrane (OM) usher to control the folding of pilus subunits, their assembly into a pilus fibre and secretion of the fibre to the cell surface. The usher serves as the assembly and secretion platform in the OM. The usher has distinct functional domains, with the N-terminus providing the initial targeting site for chaperone-subunit complexes and the C-terminus required for subsequent stages of pilus biogenesis. In this study, we investigated the molecular interactions occurring at the usher during pilus biogenesis and the function of the usher C-terminus. We provide genetic and biochemical evidence that the usher functions as a complex in the OM and that interaction of the pilus adhesin with the usher is critical to prime the usher for pilus biogenesis. Analysis of C-terminal truncation and substitution mutants of the P pilus usher PapC demonstrated that the C-terminus is required for proper binding of chaperone-subunit complexes to the usher and plays an important role in assembly of complete pili.  相似文献   

15.
VirB4 proteins are ATPases essential for pilus biogenesis and protein transport in type IV secretion systems. These proteins contain a motor domain that shares structural similarities with the motor domains of DNA translocases, such as the VirD4/TrwB conjugative coupling proteins and the chromosome segregation pump FtsK. Here, we report the three-dimensional structure of full-length TrwK, the VirB4 homologue in the conjugative plasmid R388, determined by single-particle electron microscopy. The structure consists of a hexameric double ring with a barrel-shaped structure. The C-terminal half of VirB4 proteins shares a striking structural similarity with the DNA translocase TrwB. Docking the atomic coordinates of the crystal structures of TrwB and FtsK into the EM map revealed a better fit for FtsK. Interestingly, we have found that like TrwB, TrwK is able to bind DNA with a higher affinity for G4 quadruplex structures than for single-stranded DNA. Furthermore, TrwK exerts a dominant negative effect on the ATPase activity of TrwB, which reflects an interaction between the two proteins. Our studies provide new insights into the structure-function relationship and the evolution of these DNA and protein translocases.  相似文献   

16.
VirB6 from Agrobacterium tumefaciens is an essential component of the type IV secretion machinery for T pilus formation and genetic transformation of plants. Due to its predicted topology as a polytopic inner membrane protein, it was proposed to form the transport pore for cell-to-cell transfer of genetic material and proteinaceous virulence factors. Here, we show that the absence of VirB6 leads to reduced cellular levels of VirB5 and VirB3, which were proposed to assist T pilus formation as minor component(s) or assembly factor(s), respectively. Overexpression of virB6 in trans restored levels of cell-bound and T pilus-associated VirB5 to wild type but did not restore VirB3 levels. Thus, VirB6 has a stabilizing effect on VirB5 accumulation, thereby regulating T pilus assembly. In the absence of VirB6, cell-bound VirB7 monomers and VirB7-VirB9 heterodimers were reduced and VirB7 homodimer formation was abolished. This effect could not be restored by expression of VirB6 in trans. Expression of TraD, a component of the transfer machinery of the IncN plasmid pKM101, with significant sequence similarity to VirB6, restored neither protein levels nor bacterial virulence but partly permitted T pilus formation in a virB6 deletion strain. VirB6 may therefore regulate T pilus formation by direct interaction with VirB5, and wild-type levels of VirB3 and VirB7 homodimers are not required.  相似文献   

17.
Type IV secretion systems (TFSS) mediate secretion or direct cell-to-cell transfer of virulence factors (proteins or protein-DNA complexes) from many Gram-negative animal, human and plant pathogens, such as Agrobacterium tumefaciens, Bartonella tribocorum, Bordetella pertussis, Brucella suis, Helicobacter pylori, Legionella pneumophila and Rickettsia prowazekii, into eukaryotic cells. Bacterial conjugation is also classified as a TFSS-like process mediating the spread of broad-host-range plasmids between Gram-negative bacteria such as RP4 and R388, which carry antibiotic resistance genes. Genetic, biochemical, cell biological and structural biology experiments led to significant progress in the understanding of several aspects of TFSS processes. X-ray crystallography revealed that homologues of the A. tumefaciens inner membrane-associated proteins VirB11 and VirD4 from H. pylori and R388, respectively, may form channels for substrate translocation or assembly of the transmembrane TFSS machinery. Biochemical and cell biological experiments revealed interactions between components of the periplasmic core components VirB8, VirB9 and VirB10, which may form the translocation channel. Analysis of A. tumefaciens virulence proteins VirE2 and VirF suggested that the periplasmic translocation route of the pertussis toxin from B. pertussis may be more generally valid than previously anticipated. Secretion and modification of toxins from H. pylori and L. pneumophila profoundly affect host cell metabolism, thus entering the discipline of cellular microbiology. Finally, results from genome sequencing projects revealed the presence of up to three TFSS in a single organism, and the analysis of their interplay and adaptation to different functions will be a future challenge. TFSS-carrying plasmids were discovered in different ecosystems, suggesting that genetic exchange may speed up their evolution and adaptation to different cell-cell interactions.  相似文献   

18.
The chaperone/usher (CU) pathway is a conserved bacterial secretion system that assembles adhesive fibres termed pili or fimbriae. Pilus biogenesis by the CU pathway requires a periplasmic chaperone and an outer membrane (OM) assembly platform termed the usher. The usher catalyses formation of subunit-subunit interactions to promote polymerization of the pilus fibre and provides the channel for fibre secretion. The mechanism by which the usher catalyses pilus assembly is not known. Using the P and type 1 pilus systems of uropathogenic Escherichia coli, we show that a conserved N-terminal disulphide region of the PapC and FimD ushers, as well as residue F4 of FimD, are required for the catalytic activity of the ushers. PapC disulphide loop mutants were able to bind PapDG chaperone-subunit complexes, but did not assemble PapG into pilus fibres. FimD disulphide loop and F4 mutants were able to bind chaperone-subunit complexes and initiate assembly of pilus fibres, but were defective for extending the pilus fibres, as measured using in vivo co-purification and in vitro pilus polymerization assays. These results suggest that the catalytic activity of PapC is required to initiate pilus biogenesis, whereas the catalytic activity of FimD is required for extension of the pilus fibre.  相似文献   

19.
Agrobacterium tumefaciens uses a type IV secretion (T4S) system composed of VirB proteins and VirD4 to deliver oncogenic DNA (T-DNA) and protein substrates to susceptible plant cells during the course of infection. Here, by use of the Transfer DNA ImmunoPrecipitation (TrIP) assay, we present evidence that the mobilizable plasmid RSF1010 (IncQ) follows the same translocation pathway through the VirB/D4 secretion channel as described previously for the T-DNA. The RSF1010 transfer intermediate and the Osa protein of plasmid pSa (IncW), related in sequence to the FiwA fertility inhibition factor of plasmid RP1 (IncPalpha), render A. tumefaciens host cells nearly avirulent. By use of a semi-quantitative TrIP assay, we show that both of these 'oncogenic suppressor factors' inhibit binding of T-DNA to the VirD4 substrate receptor. Both factors also inhibit binding of the VirE2 protein substrate to VirD4, as shown by coimmunoprecipitation and bimolecular fluorescence complementation assays. Osa fused to the green fluorescent protein (GFP) also blocks T-DNA and VirE2 binding to VirD4, and Osa-GFP colocalizes with VirD4 at A. tumefaciens cell poles. RSF1010 and Osa interfere specifically with VirD4 receptor function and not with VirB channel activity, as shown by (i) TrIP and (ii) a genetic screen for effects of the oncogenic suppressors on pCloDF13 translocation through a chimeric secretion channel composed of the pCloDF13-encoded MobB receptor and VirB channel subunits. Our findings establish that a competing plasmid substrate and a plasmid fertility inhibition factor act on a common target, the T4S receptor, to inhibit docking of DNA and protein substrates to the translocation apparatus.  相似文献   

20.
Agrobacterium tumefaciens uses a type IV secretion system to deliver a nucleoprotein complex and effector proteins directly into plant cells. The single-stranded DNA-binding protein VirE2, the F-box protein VirF and VirE3 are delivered into host cells via this VirB/D4 encoded translocation system. VirE1 functions as a chaperone of VirE2 by regulating its efficient translation and preventing VirE2-VirE2 aggregation in the bacterial cell. We analyzed whether the VirE1 chaperone is also essential for transport recognition of VirE2 by the VirB/D4 encoded type IV secretion system. In addition, we assayed whether translocation of VirF and VirE3, which also forms part of the virE operon, is affected by the absence of VirE1. We employed the earlier developed CRAFT (Cre recombinase Reporter Assay For Translocation) assay to detect transfer of Cre::Vir fusion proteins from A. tumefaciens into plants, monitored by stable reconstitution of a kanamycin resistance marker, and into yeast, screened by loss of the URA3 gene. We show that the C-terminal 50 amino acids of VirE2 and VirE3 are sufficient to mediate Cre translocation into host cells, confirming earlier indications of a C-terminal transport signal. This transfer was independent of the presence or absence of VirE1. Besides, the translocation efficiency of VirF is not altered in a virE1 mutant. The results unambiguously show that the VirE1 chaperone is not essential for the recognition of the VirE2 transport signal by the transport system and the subsequent translocation across the bacterial envelope into host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号