首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 535 毫秒
1.
2.
3.
4.
Clustered regularly interspaced short palindromic repeats (CRISPR)‐encoded immunity in Type I systems relies on the Cascade (CRISPR‐associated complex for antiviral defence) ribonucleoprotein complex, which triggers foreign DNA degradation by an accessory Cas3 protein. To establish the mechanism for adaptive immunity provided by the Streptococcus thermophilus CRISPR4‐Cas (CRISPR‐associated) system (St‐CRISPR4‐Cas), we isolated an effector complex (St‐Cascade) containing 61‐nucleotide CRISPR RNA (crRNA). We show that St‐Cascade, guided by crRNA, binds in vitro to a matching proto‐spacer if a proto‐spacer adjacent motif (PAM) is present. Surprisingly, the PAM sequence determined from binding analysis is promiscuous and limited to a single nucleotide (A or T) immediately upstream (?1 position) of the proto‐spacer. In the presence of a correct PAM, St‐Cascade binding to the target DNA generates an R‐loop that serves as a landing site for the Cas3 ATPase/nuclease. We show that Cas3 binding to the displaced strand in the R‐loop triggers DNA cleavage, and if ATP is present, Cas3 further degrades DNA in a unidirectional manner. These findings establish a molecular basis for CRISPR immunity in St‐CRISPR4‐Cas and other Type I systems.  相似文献   

5.
CRISPR–Cas systems are adaptive immune systems in bacteria and archaea to defend against mobile genetic elements (MGEs) and have been repurposed as genome editing tools. Anti-CRISPR (Acr) proteins are produced by MGEs to counteract CRISPR–Cas systems and can be used to regulate genome editing by CRISPR techniques. Here, we report the cryo-EM structures of three type I-F Acr proteins, AcrIF4, AcrIF7 and AcrIF14, bound to the type I-F CRISPR–Cas surveillance complex (the Csy complex) from Pseudomonas aeruginosa. AcrIF4 binds to an unprecedented site on the C-terminal helical bundle of Cas8f subunit, precluding conformational changes required for activation of the Csy complex. AcrIF7 mimics the PAM duplex of target DNA and is bound to the N-terminal DNA vise of Cas8f. Two copies of AcrIF14 bind to the thumb domains of Cas7.4f and Cas7.6f, preventing hybridization between target DNA and the crRNA. Our results reveal structural detail of three AcrIF proteins, each binding to a different site on the Csy complex for inhibiting degradation of MGEs.  相似文献   

6.
The Type I-F CRISPR-mediated (clustered regularly interspaced short palindromic repeats) adaptive immune system in Pseudomonas aeruginosa consists of two CRISPR loci and six CRISPR-associated (cas) genes. Foreign DNA surveillance is performed by a complex of Cas proteins (Csy1–4) that assemble with a CRISPR RNA (crRNA) into a 350-kDa ribonucleoprotein called the Csy complex. Here, we show that foreign nucleic acid recognition by the Csy complex proceeds through sequential steps, initiated by detection of two consecutive guanine–cytosine base pairs (G–C/G–C) located adjacent to the complementary DNA target. We show that this motif, called the PAM (protospacer adjacent motif), must be double-stranded and that single-stranded PAMs do not provide significant discriminating power. Binding assays performed with G–C/G–C-rich competitor sequences indicate that the Csy complex interacts directly with this dinucleotide motif, and kinetic analyses reveal that recognition of a G–C/G–C motif is a prerequisite for crRNA-guided binding to a target sequence. Together, these data indicate that the Csy complex first interacts with G–C/G–C base pairs and then samples adjacent target sequences for complementarity to the crRNA guide.  相似文献   

7.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated proteins (Cas; CRISPR associated) are a bacterial defense mechanism against extra-chromosomal elements. CRISPR/Cas systems are distinct from other known defense mechanisms insofar as they provide acquired and heritable immunity. Resistance is accomplished in multiple stages in which the Cas proteins provide the enzymatic machinery. Importantly, subtype-specific proteins have been shown to form complexes in combination with small RNAs, which enable sequence-specific targeting of foreign nucleic acids. We used Pectobacterium atrosepticum, a plant pathogen that causes soft-rot and blackleg disease in potato, to investigate protein-protein interactions and complex formation in the subtype I-F CRISPR/Cas system. The P. atrosepticum CRISPR/Cas system encodes six proteins: Cas1, Cas3, and the four subtype specific proteins Csy1, Csy2, Csy3 and Cas6f (Csy4). Using co-purification followed by mass spectrometry as well as directed co-immunoprecipitation we have demonstrated complex formation by the Csy1-3 and Cas6f proteins, and determined details about the architecture of that complex. Cas3 was also shown to co-purify all four subtype-specific proteins, consistent with its role in targeting. Furthermore, our results show that the subtype I-F Cas1 and Cas3 (a Cas2-Cas3 hybrid) proteins interact, suggesting a protein complex for adaptation and a role for subtype I-F Cas3 proteins in both the adaptation and interference steps of the CRISPR/Cas mechanism.  相似文献   

8.
9.
Bacteriophage infection has profound effects on bacterial biology. Clustered regular interspaced short palindromic repeats (CRISPRs) and cas (CRISPR-associated) genes are found in most archaea and many bacteria and have been reported to play a role in resistance to bacteriophage infection. We observed that lysogenic infection of Pseudomonas aeruginosa PA14 with bacteriophage DMS3 inhibits biofilm formation and swarming motility, both important bacterial group behaviors. This inhibition requires the CRISPR region in the host. Mutation or deletion of five of the six cas genes and one of the two CRISPRs in this region restored biofilm formation and swarming to DMS3 lysogenized strains. Our observations suggest a role for CRISPR regions in modifying the effects of lysogeny on P. aeruginosa.  相似文献   

10.
11.
Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade recognizes DNA targets via protein-mediated recognition of a protospacer adjacent motif and complementary base pairing between the crRNA spacer and the DNA target. Previously determined structures of Cascade showed that the crRNA is stretched along an oligomeric protein assembly, leading us to ask how crRNA length impacts the assembly and function of this complex. We found that extending the spacer portion of the crRNA resulted in larger Cascade complexes with altered stoichiometry and preserved in vitro binding affinity for target DNA. Longer spacers also preserved the in vivo ability of Cascade to repress target gene expression and to recruit the Cas3 endonuclease for target degradation. Finally, longer spacers exhibited enhanced silencing at particular target locations and were sensitive to mismatches within the extended region. These findings demonstrate the flexibility of the Type I-E CRISPR machinery and suggest that spacer length can be modified to fine-tune Cascade activity.  相似文献   

12.
CRISPR (clustered regularly interspaced short palindromic repeats), an ancient defense mechanism used by prokaryotes to cleave nucleic acids from invading viruses and plasmids, is currently being harnessed by researchers worldwide to develop new point-of-need diagnostics. In CRISPR diagnostics, a CRISPR RNA (crRNA) containing a “spacer” sequence that specifically complements with the target nucleic acid sequence guides the activation of a CRISPR effector protein (Cas13a, Cas12a or Cas12b), leading to collateral cleavage of RNA or DNA reporters and enormous signal amplification. CRISPR function can be disrupted by some types of sequence mismatches between the spacer and target, according to previous studies. This poses a potential challenge in the detection of variable targets such as RNA viruses with a high degree of sequence diversity, since mismatches can result from target variations. To cover viral diversity, we propose in this study that during crRNA synthesis mixed nucleotide types (degenerate sequences) can be introduced into the spacer sequence positions corresponding to viral sequence variations. We test this crRNA design strategy in the context of the Cas13a-based SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) technology for detection of Crimean–Congo hemorrhagic fever virus (CCHFV), a biosafety level 4 pathogen with wide geographic distribution and broad sequence variability. The degenerate-sequence CRISPR diagnostic proves functional, sensitive, specific and rapid. It detects within 30–40 minutes 1 copy/μl of viral RNA from CCHFV strains representing all clades, and from more recently identified strains with new mutations in the CRISPR target region. Also importantly, it shows no cross-reactivity with a variety of CCHFV-related viruses. This proof-of-concept study demonstrates that the degenerate sequence-based CRISPR diagnostic is a promising tool of choice for effective detection of highly variable viral pathogens.  相似文献   

13.
14.
CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR–Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response. Primed adaptation requires all Cas proteins and a CRISPR RNA recognizing a partially matching target. It leads to selective acquisition of spacers from DNA molecules recognized by priming CRISPR RNA, with most spacers capable of protecting the host. Here, we studied spacer acquisition by a type I-F CRISPR–Cas system. We observe both naïve and primed adaptation. Both processes require not just Cas1 and Cas2, but also intact Csy complex and CRISPR RNA. Primed adaptation shows a gradient of acquisition efficiency as a function of distance from the priming site and a strand bias that is consistent with existence of single-stranded adaption intermediates. The results provide new insights into the mechanism of spacer acquisition and illustrate surprising mechanistic diversity of related CRISPR–Cas systems.  相似文献   

15.
Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated Cas proteins comprise a prokaryotic RNA-guided adaptive immune system that interferes with mobile genetic elements, such as plasmids and phages. The type I-E CRISPR interference complex Cascade from Escherichia coli is composed of five different Cas proteins and a 61-nt-long guide RNA (crRNA). crRNAs contain a unique 32-nt spacer flanked by a repeat-derived 5′ handle (8 nt) and a 3′ handle (21 nt). The spacer part of crRNA directs Cascade to DNA targets. Here, we show that the E. coli Cascade can be expressed and purified from cells lacking crRNAs and loaded in vitro with synthetic crRNAs, which direct it to targets complementary to crRNA spacer. The deletion of even one nucleotide from the crRNA 5′ handle disrupted its binding to Cascade and target DNA recognition. In contrast, crRNA variants with just a single nucleotide downstream of the spacer part bound Cascade and the resulting ribonucleotide complex containing a 41-nt-long crRNA specifically recognized DNA targets. Thus, the E. coli Cascade-crRNA system exhibits significant flexibility suggesting that this complex can be engineered for applications in genome editing and opening the way for incorporation of site-specific labels in crRNA.  相似文献   

16.
17.
18.
Here we report the isolation of 6 temperate bacteriophages (phages) that are prevented from replicating within the laboratory strain Pseudomonas aeruginosa PA14 by the endogenous CRISPR/Cas system of this microbe. These phages are only the second identified group of naturally occurring phages demonstrated to be blocked for replication by a nonengineered CRISPR/Cas system, and our results provide the first evidence that the P. aeruginosa type I-F CRISPR/Cas system can function in phage resistance. Previous studies have highlighted the importance of the protospacer adjacent motif (PAM) and a proximal 8-nucleotide seed sequence in mediating CRISPR/Cas-based immunity. Through engineering of a protospacer region of phage DMS3 to make it a target of resistance by the CRISPR/Cas system and screening for mutants that escape CRISPR/Cas-mediated resistance, we show that nucleotides within the PAM and seed sequence and across the non-seed-sequence regions are critical for the functioning of this CRISPR/Cas system. We also demonstrate that P. aeruginosa can acquire spacer content in response to lytic phage challenge, illustrating the adaptive nature of this CRISPR/Cas system. Finally, we demonstrate that the P. aeruginosa CRISPR/Cas system mediates a gradient of resistance to a phage based on the level of complementarity between CRISPR spacer RNA and phage protospacer target. This work introduces a new in vivo system to study CRISPR/Cas-mediated resistance and an additional set of tools for the elucidation of CRISPR/Cas function.  相似文献   

19.
20.
Guide RNA molecules (crRNA) produced from clustered regularly interspaced short palindromic repeat (CRISPR) arrays, altogether with effector proteins (Cas) encoded by cognate cas (CRISPR associated) genes, mount an interference mechanism (CRISPR-Cas) that limits acquisition of foreign DNA in Bacteria and Archaea. The specificity of this action is provided by the repeat intervening spacer carried in the crRNA, which upon hybridization with complementary sequences enables their degradation by a Cas endonuclease. Moreover, CRISPR arrays are dynamic landscapes that may gain new spacers from infecting elements or lose them for example during genome replication. Thus, the spacer content of a strain determines the diversity of sequences that can be targeted by the corresponding CRISPR-Cas system reflecting its functionality. Most Escherichia coli strains possess either type I-E or I-F CRISPR-Cas systems. To evaluate their impact on the pathogenicity of the species, we inferred the pathotype and pathogenic potential of 126 strains of this and other closely related species and analyzed their repeat content. Our results revealed a negative correlation between the number of I-E CRISPR units in this system and the presence of pathogenicity traits: the median number of repeats was 2.5-fold higher for commensal isolates (with 29.5 units, range 0–53) than for pathogenic ones (12.0, range 0–42). Moreover, the higher the number of virulence factors within a strain, the lower the repeat content. Additionally, pathogenic strains of distinct ecological niches (i.e., intestinal or extraintestinal) differ in repeat counts. Altogether, these findings support an evolutionary connection between CRISPR and pathogenicity in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号